
NextGen Scientific Publication Volume 7 Issue 4, Pg. No. 79-92, AIJCST-V7I4P107, 2025

American International Journal of Computer Science and Technology https://doi.org/10.63282/3117-5481/AIJCST-V7I4P107

Copyright @ 2025 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

Original Article

*Sunil Anasuri

Independent Researcher, USA.

Article History:

Received: 25.05.2025

Revised: 28.06.2025

Accepted: 09.07.2025

Published: 20.07.2025

1. Introduction

1.1. Background
Due to the fast development of the cloud computing, the process of application design, implementation, and maintenance has

been drastically modified. In a classical server-based architecture, developers and operations teams had the responsibility of
provisioning, server configuration, scaling, and ensuring availability, which usually took a lot of time, resources as well as expertise. [1-
4] With the increasing demands of higher agility and scalability, cloud providers came up with virtualization and containerization
technology to ease management of the infrastructure. Nevertheless, these still entailed certain degree of maintenance and
orchestration of the servers. Serverless computing, which was especially debuted in 2014 with the initiation of AWS Lambda, further

advanced the abstraction to a highly significant level. Serverless allows you to run code in response to backend events without
worrying about server infrastructure. Task like provisioning, scaling, patching and capacity planning need not be worried by the cloud
service provider in this context. The difference means the average developer will be able to focus only on writing and deploying
business logic, providing for a faster software development cycle, a more efficient use of resources, and smooth operation. As a result,
serverless has been one of the dominant design patterns in cloud native applications.
1.2. Importance of Serverless Architecture

Abstract:

Serverless as one of the promising cloud computing technologies, Serverless allows resources to be

provisioned automatically and assigned by cloud providers. Serverless architecture provides the

ability to forget about infrastructure management and deliver auto-scaling capability, implement

event-driven deployment, and charge at a very fine-grain level through the advent of Function-as-

a-Service (FaaS) and Backend-as-a-Service (BaaS). The present paper gives a comprehensive

overview of serverless architecture including its deployment models, cost considerations and

changes in latency. Some of the following deployment patterns to be discussed in this paper will

include microservices orchestration, fan-out/fan-in and event stream processing. An integrated

evaluation model is conducted, that means the competitiveness of AWS Lambda, Azure Functions

and Google Cloud Functions are compared. Cold start latency, execution time, and scalability are

measured by evaluating real-world workloads. In the cost analysis, the time, memory, and calls of

execution are considered. We also evaluate design trade-offs, and how to minimize latency and

optimize costs. In our findings, albeit the strong benefits of serverless in terms of speed and cost-

effectiveness, architectural and operational constraints will have to be taken into consideration in

high-performance and real-time systems.

Keywords:

Serverless Computing, Function-as-a-Service (FaaS), Cloud Architecture, Latency, Cost

Optimization, Deployment Patterns, Microservices, AWS Lambda, Google Cloud Functions, Azure

Functions.

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

80

Serverless architecture is the buzz in today’s application development that offers a lot of benefits over the traditional server-
based deploy or even compared to the containerized applications. It has great influence on multiple dimensions of software
engineering, including scalability, cost effectiveness, time-to-market and ease of operation.

Figure 1. Importance of Serverless Architecture

1.2.1. Enhanced Developer Productivity

One of the advantages of serverless computing is that, developers can entirely focus on running code implementation and
offload the responsibility to provision, scale and maintain servers to serverless platform. Serverless makes more sense for Agile teams
and the ever-shortening development cycles of CI-CD, as it shortens end-to-end dev time and reduces your go-to-market window
phenomenally.

1.2.2. Automatic and Seamless Scalability

Functions are scaled automatically by servers platforms due to on-flow traffic. The stack scales from 1 to 1000s of requests per

second and nothing is started manually; resources are allocated dynamically. This plasticity makes it very apropos to apply for
constantly unpredictable and spiky load applications (web services, Internet of Things backends, event-driven pipelines).

1.2.3. Cost Efficiency

Serverless payments are pay-per-use as opposed to traditional architectures where you have to pay even if the servers aren’t
being used. Function users are only charged based on exactly how long functions take to run and the resources they consume. Not
charging by the hour PCCW--by how many minutes, can be a big savings in costs, especially where usage is sporadic or with application
usages that might have rough estimates for continuous workloads.

1.2.4. Improved Resilience and Fault Tolerance

Serverless systems are also extremely reliable and have a high availability, while fault tolerance is the default mode. The

functioning infrastructure is provided by the cloud provider to manage and reproduce along with offering resilient failure recovery,
geographic redundancy and low downtime without the user demanding a complicated configuration process.

1.2.5. Simplified Operations and Maintenance

Serverless relieves the DevOps workforce by an enormous margin by transferring the challenges of operating servers such as
capacity planning, software updates and load balancing to the cloud provider. This results in a reduced number of operational
incidents, reduced deployment pipelines, and maintenance of the application lifecycle.

1.3. Patterns: Deployment, Cost, and Latency Analysis

Serverless processing can understand a range of distribution designs with important effects on use techniques, cost designs and
performances specifically late. [5,6] Microservices Orchestration, Fan-out/Fan-in and Event Stream Processing are among the common

serverless deployment patterns. Each pattern is applied to different functional requirements, data flow processes and costs associated
therewith and the implications of these patterns are not the same. For instance, microservices orchestration, a way of combining
several small and single function with assistance from the likes AWS Step Functions or Azure Durable Functions. This architecture
carries better modularity and maintainability advantages, but could carry more cost and latency with inter-function communication

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

81

logic or state management. Fan-out/Fan-in pattern, on the other hand is set up to parallelize, we call several functions at once and
collect their work back together. While it improves scalability and reduces total processing time, it results in more invocations which
might impact overall monetary cost especially when considering the billing strategy that is used at the platform side. The price model
in serverless architecture (pay-per-use) results in complex cost analysis, based on execution time, memory and invocations among
other factors. Based on this fact, if designs require many small functions, even if these functions are lightweight the cost of achieving
them can be high. Conversely, overhead in billing can be minimized through the bundling of functions or by optimizing execution time.

The latency study also matters, in part because cold starts can significantly impact the runtime performance when functions are
invoked after an extended period of idle time. Other applications that perform rare but high QPS functions such as fan-in aggregation
in analytics systems can be particularly susceptible to cold-start longtail delays. Choosing how to design your serverless application can
be guided by these analyses from deployment complexity, cost and latency behavior when the patterns are used. Suitable pattern
selection, of the load and performance objectives is a key step on achieving benefits of serverless computing.

2. Literature Survey
2.1. Evolution of Serverless Computing

Right Place, Right Time Serverless computing came out of a broader shift toward microservices and containerization that
prioritized breaking down app deployments into smaller, more efficient pieces. [7-10] - Early-generation cloud computing systems
were essentially VM-based, where the developer was responsible for running OSes and runtime systems. The next development was
containers, which provided less cumbersome environments in terms of portability, such as Docker and Kubernetes technologies. The
last one was the introduction of Function-as-a-Service (FaaS) platforms that eliminated management of infrastructure completely.
Works like those that track such evolution and point out that serverless computing allows developers to work completely in terms of
code and event-driven architecture without worrying much about the operational workload.

2.2 Key Providers and Platforms

Other leading cloud vendors have created their custom serverless environments and have varying capabilities and language
support. AWS Lambda is the oldest available FaaS framework, introduced in the year 2014 and it is not limited to a single
programming language with it serving broad variety of languages such as node.js, python, java and many others. In 2016 Microsoft
introduced Azure Functions that provides C#, JavaScript, Python, etc., and integrates tightly with the rest of the Azure platform. In
2017, Google Cloud Functions were released that supported Node.js, Python and Go, and aimed at being simple to use and integrated
with other Google Cloud services. These platforms have contrasting characteristics with respect to the view of performance, pricing,
scaling choices, and the assimilation into the ecosystem, which affect how appropriately they might be applied to diverse application
settings.

2.3. Performance Benchmarks

Serverless computing partly depends on performance, especially cold start latency. McGrath and Brenner made intricate

benchmarking research of which they found large variability in time taken to do cold starts based on the provider and the language
spoken. Cold starts are the duration that is required to initialize a new instance of a procedure with no warm containers. They found
that the latency might be as minimal as 100 milliseconds up to some several seconds, and that might be disastrous in the user
experience of latency-sensitive applications. Examples of the factors affecting the cold start time are the size of the function package,
the logic to be initialized and the technology underlying the virtualization.

2.4. Cost Efficiency Studies

In many implementations, serverless computing has been promoted as cost-effective, especially on workload with non-
predictable or infrequent workload consumption. Jonas et al. note that serverless models are much more cost-effective to run bursty,
event-driven applications because their cost model is pay-per-use, meaning that they are only charged on real-life consumption and
the actual time of the functions themselves. This negates the idle resource cost associated with VM-based or container-based systems.

Yet their paper observes that the cost advantage also disappears, as seen in long-term applications or those with a heavy and sustained
utilization. In such cases customary deployments with VMs or containers may cost less because of their fixed pricing and resource
quotas.

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

82

2.5. Latency Challenges
There are a number of challenges presented by serverless computing, as good as they might be. There are immediate and well-

known problems with these – the most severe being the cold start issue with lack of immutability of function instances. Furthermore,
the network overhead is often an issue with serverless functions since they tend to need to communicate directly with external APIs or
databases a great deal and are not able to use local state or caching which exacerbates that point. As a consequence of these issues,
several approaches to address them have been proposed. AWS has a provisioned concurrency model; it keeps a set number of cold

functions live all the time, keeping embodiment really cold but without too much additional latency to receive requests. Developers are
given help to keep the functions 'warmed-up' via plugins, or scheduled invocations as well. But previous solutions are admitted to be a
set of compromises between cost and performance.

3. Methodology
3.1. Research Design

The research will be mixed-method in nature, employing both qualitative and quantitative designs to conduct a comprehensive
evaluation of serverless computing platforms. In this project we plan to compare these three players with respect to performance,
latency and cost. [11-13] Combining simulations and actual deployment testing allows for reasonable, repeatable finding to be gathered
for practical use scenarios. One of them, the quantitative aspect involves collection of empirical data from controlled experiments. They
involve running of the same workloads on all three platforms and measuring the cold start time, the task execution time, resource used
by it and the amount spent for it. In order to have a wide range in performance, benchmarks are executed at different environments
(e.g., languages, memory invoking frequencies) as well. The statistical treatment of results obtained from the data will serve to reveal
the difference, trend and strength or weakness when compared to the other platforms. On the qualitative matters, are considered
developers experience, deployment complexity, debugging facilities and platform characteristics that may influence the situation in
terms of usability and productivity. These will be noted during testing and a detailed review of all documentation and support tools
available from each vendor. Development barriers confronted at the packaging functions; third party integration and runtime are also

documented to present aspects of actual development. Its slapdash treatment of performance and ease-of-use leaves a lot to be desired
when it comes to understanding what serverless platforms are actually like to use. Additionally, the simulation tools are used to
simulate bursty traffic patterns and long-running tasks in order to repeat the stress testing without consuming much cloud resources.
A simulated environment may complement real deployment testing, as well as explore interesting edge cases and scaling limits
without risk. Overall, the mixed methods design ensures that the research process does not just measure performance in terms of
technical suitability, but also looks at whether the offering is viable for practitioners with practical dynamics, and while it does not deal
with one developer looking forward and as such makes the research work more viable on paper for both cloud computing practitioners
and researchers.

3.2. Deployment Patterns Evaluated

Figure 2. Deployment Patterns Evaluated

3.2.1. Microservices Orchestration

In this model, serverless functions are layered to help execute a manageable but complex flow across several serverless
functions each one focused on single functionality. Knobs to orchestrate how to run the flow, like sequencing, divergence and failure
handling are typically provided even at infrastructure/execution layer by tolls like AWS Step Functions, Azure Durable Functions,

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

83

Google Workflows. It is this pattern that can be particularly useful when applications need processing that involves multiple steps as it
can allow modularity of design, excellent fault isolation, and maintenance of individual services.

3.2.2. Fan-out/Fan-in

The fan-out/fan-in structure consists of calling several functions simultaneously in order to run tasks in parallel and combine
the output. It is predominantly applied to data processing pipeline, image transformations or parallel calculation. An example is that a

parent function can invoke multiple child functions at the same time to process data in chunks and when all are ready, the parent sums
up the results. This is the pattern that demonstrates the best performance and scalability, although it has to be organized carefully to
managing concurrency limitations and consistency of its results.

3.2.3. Event Stream Processing

Serverless event stream processing processes data events in real-time based on event-driven triggers generated by a different
source (e.g. message queues such AWS Kinesis, Azure Event Hubs, Google Pub/Sub). Functions are run automatically when new events
are released, thus the processing of logs or metrics, or user generated content can be near-real time. This is the best pattern to be used
on real-time analysis, monitoring and alerting systems. Making it highly scaleable and responsive, there is also added complexity of
handling concurrency of functions and message sequencing.

3.3. Experimental Setup
The structure of the experiment was well thought out so that the evaluation of the selected serverless platforms (AWS Lambda,

Azure functions, and Google Cloud functions) could be the same, fair, and repeatable. [14-16] All the platforms were set up with
identical ranges of parameters to reduce the variability introduced because of the non-homogenised platforms. the major parameters
used to test the system configuration. Memory size was configured between 128MB and 2048MB, so we may observe the behavior of
performance and cost-efficiency to resource provisioning. This range was selected since memory allocation in serverless functions can
directly impact on the amount of CPU and I/O throughput, such that it can hit very low and fairly heavy cases. The task size of each of
the functions was set to between 100 milliseconds and 900000 milliseconds (15 minutes) as the maximum support of executions in
AWS Lambda and other platforms is similar. This spectrum was vital to test the functions with short-living jobs such as the REST API
end points and long running jobs such data transformation and image image processing. Repeated workloads with varying
configurations were run to obtain consistent metrics of cold start latencies, run times and billing expenses. Two major test workloads

were identified to represent realistic workload scenarios in the current cloud-native applications. The initial workload was of
processing of image, which is computationally expensive and best suited to test concurrency, CPU bound actions and memory
management. The second piece of workload was REST API simulation, covering both simple CRUD operations and data fetching tasks
to simulate some typical web backend actions. These different workloads were then invoked and executed on each individual platform
using the same source code and invocation logic so that a fair comparison could be made. Performance execution metrics were
achieved by monitoring and logging tools depend on the respective cloud provider.

3.4. Metrics

Figure 3. Metrics

3.4.1. Cold Start Time (Tcs)

Cold start time denotes the slowdown that is realized when a serverless function is first called upon after some time of
inactivity, and requires a supplier of resources, kernel start-up, and loading of the code of the particular worked-on. This measure is
very important in latency-sensitive applications that have a tendency of adding up a few hundred milliseconds to several seconds. Tcs

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

84

measurements can be used to assess responsiveness of every platform when invoked at a first time or at infrequent intervals and is an
indication of how well a platform initiates containers.

3.4.2. Warm Start Time (Tws)

Warm start time required to perform a serverless job the time when it is called quickly after a preceding experience and the
runtime environment is as yet productive. The warm starts are much faster compared with cold starts since the infrastructure is

initialized. The field of measuring Tws informs how well a platform is likely to perform in a worst-case or "high latency" scenario and
is helpful when one wants to know how well an application can easily and cheaply accommodate switching among artificially frequent
or artificially bursty tasks.

3.4.3. Execution Duration (Td)

Execution duration- The actual time that the function currently executes user code. This metric is referred as Td and comprises
processing logic, external API calls, and I/O. It directly effects your billing and the response speed of your application, because in most
serverless platforms there is a pay-per-request or pay-per-call charging method. When Td is analyzed under varying workloads and
configurations, performance efficiency and utilization of resources is disclosed.

3.4.4. Total Cost (C)

Total cost (C) measures the financial charge associated with running the serverless function taking memory allocation, the
amount of time it takes the function to complete, and the quantity of invocations as the potential factors that influence it. This measure
is critical to understanding the economic viability of serverless deployment, in particular large scale or long running applications. The
research compares the overall cost of the platforms and workload types to determine the most affordable an individual might get using
different conditions of use.

3.5. Cost Calculation Formula
The billing of the serverless computing is based on the appropriate synthesis of resource consumption, the length of the executions,
and the number of invocations. [17-20] The pricing construct applied by the majority of significant platforms like AWS Lambda, Azure
Functions, and Google Cloud Function is built on two major elements, including the compute cost and cost per request. The cost to
compute is estimated according to the amount of the memory dedicated to a function and the function execution time expenditure,

whereas the request cost calculates the number of calls to a function. General cost calculation formula can be written as:
C = (M × Td × Pm) + (N × Pr)
Where:
C is the total cost,
M is the memory allocated (in GB),
Td is the execution duration (in seconds),
Pm is the price per GB-second (platform-specific),
N is the number of invocations,
Pr is the price per invocation (platform-specific).

This formula gives another pattern of generalizing the price that serverless workloads run on various platforms. As an example,
AWS Lambda (as of the recent pricing) will cost $0.00001667 per GB-second and $0.20 per 1 million requests. That is, in a case where
the function saves 512MB (0.5GB) memory, takes 1 second, and is called 1 million times, the cost of computation would be: 0.5 x 1 x
0.00001667 x 1,000,000 = 8.34. The 0.20 request added puts the total cost to $8.54. This formulation enables designers and
practitioners to compare the efficiency when they are designed/operate on different resource costs with serverless functions of diverse
computations/workloads at deployment. It also demonstrates what happens when we reduce the memory and processing time. An as
similar equivalent approach adopted by this study in order to keep a fair relation of cost between various test workloads and platforms
to avoid biases as much as possible and get insights for even potential server side-specific strategic decisions.

3.6. Tools Used
3.6.1. Apache JMeter for Load Testing

To create concurrent requests and simulate traffic of users, Apache JMeter was used. It supported deep load testing by giving
the possibility of setting a different invocation rate, payload size, and concurrency. This assisted in testing each of the serverless

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

85

platforms in handling high-load situations concurring performance bottlenecks and gauging reaction times during a stress condition.
The ability of JMeter to be extended and give real-time reporting capabilities provided it to be used to obtain reproducible and scalable
test scenarios.

3.6.2. AWS X-Ray for Tracing

The performance of functions on the AWS Lambda stage was traced and analyzed with the help of AWS X-Ray. It had rich

traceability of request patterns, function execution times, downstream service calls (e.g DynamoDB, S3), and errors. Trace maps and
visual timelines of X-Ray were key to the identification of cold starts, delays and unsuccessful completion. It assisted in identifying
performance faults and awareness of how distributed elements in the AWS environment communicate with each other in executing
functions.

Figure 4. Tools Used

3.6.3. Azure Application Insights

The major observability tool suggested in the case of monitoring functions on use of the Azure Function was Azure application
Insights. It provided an end-to-end telemetry about the execution of functions with metrics of requests per minute, failures per minute,
response time and dependency tracing. Owing to such features as the stream of live performance metrics, the ability creates custom
log and anomaly detection powered by AI, Application Insights proved useful to gain insight into the runtime behavior as well as

performance trends and enhance reliability and efficiency during the tests.

3.6.4. Google Stackdriver
Google Cloud Functions could be monitored and diagnosed using Google Stackdriver implemented into Google Cloud Platform

and later into the Cloud Operations Suite. It had logging, measures, and tracing support and provided central visibility into the flow of
execution and faults. Real-time dashboards and alerts provided by Stackdriver helped to determine the system health, cold start effects,
and confirm how workload behaves in various testing conditions.

3.7. Flowchart of Methodology

Figure 5. Flowchart of Methodology

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

86

3.7.1. Select Pattern
At the initial stage of the research methodology, it is important to pick a certain serverless deployment pattern. This involves

the selection of some of the more common architectures (i.e. Microservices Orchestration, Fan-out/Fan-in, as well as, Event Stream
Processing). Every pattern is an application model with varying performances and scalability attributes. The choice of the pattern
determines the structure of the functions, the way that functions may interact and also the kind of workloads which will be tested. This
is done to make the research be realistic in terms of application scenarios and easy to compare any cloud platform with another.

3.7.2. Deploy on 3 Clouds

After the choice of the pattern, the second step is to deploy the implementation of the serverless into three big clouds (AWS
lambda, Azure functions and Google cloud functions). All the three platforms will be tested on the same code and setting to achieve
consistency and fairness with evaluation. Deployment involves the provision of required triggers, access, and supplementary services.
The cross-platform deployment allows simultaneous testing of the way each of the cloud providers performs the same workload in a
comparable environment.

3.7.3. Measure Metrics (Tcs, C)

Once the applications are implemented, the measurements of the most essential cost and performance indicators are made.
These are Cold Start Time (Tcs) to measure how long it takes the startup and the Total Cost (C) to measure how much money is spent.

Apache JMeter, AWS X-Ray, Azure Application Insights, and Google Stackdriver are tools with which specific execution information is
collected. This will require controlled testing and results measurements are achieved by tracing execution, logs and billing information
to determine the behavior of each platform at different workloads and different invocation patterns.

3.7.4. Analyze Trade-offs

The last would be to study the trade-off between its performance and cost among the platforms and deployment patterns. That
would incorporate the interpretation of data collected so as to gain insights regarding weakness and strengths, such as which provider
has faster cold start, or which one is cheaper in the distribution of specific patterns. This is aimed at giving practical measures of which
server less platform developers and architects should adopt as per the type of workload, performance requirements and the budgetary
investment limitation.

4. Results and Discussion
4.1. Cold Start Latency

Table 1. Cold Start Latency

Platform Average Cold Start (ms)
AWS Lambda 400

Azure Functions 900

GCF 750

Figure 5. Graph Representing Cold Start Latency

400

900

750

0

200

400

600

800

1000

AWS Lambda Azure Functions GCF

Average Cold Start (ms)

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

87

4.1.1. AWS Lambda
The average cold start latency across the three platforms was the lowest in AWS Lambda, with the average of 400 milliseconds.

The cold start here is comparatively quick, which can be explained by the fact that the AWS infrastructure is long-established and the
serverless architecture provides a handful of optimizations such as provisioned concurrency and effective runtime management.
Likewise, AWS also allows using a wide range of runtimes, and provides flexibility in wrapping and deployment of functions, both of
which can affect cold start behaviour. This benchmark position AWS Lambda to be a good fit to latency-sensitive workloads including

APIs and real-time data processing.

4.1.2. Azure Functions
On average, Azure Functions had the worst cold start latency with a value of 900 milliseconds. Although Azure offers farm-

strength capabilities such as Durable Functions and the smooth interaction with the rest of the Azure environment, it cannot perform
as well regarding the cold start as its rivals. The latency is particularly observable where cold starts have been used in consumption
plans with C# or .NET Core runtimes. In spite of Azure providing Premium and Dedicated plans in its attempt to minimize cold starts,
they are associated with additional expenses. In time-sensitive applications, a developer may have the necessity to consider such
options or make better use of deployment options.

4.1.3. Google Cloud Functions (GCF)

Google Cloud Functions is optimistically average with a cold start latency of 750 milliseconds that fits between AWS and Azure
with performance. The advantage of using GCF with the global infrastructure of Google and supporting the lightweight runtimes, such
as Node.js and Go that often have shorter initialization processes. Nevertheless, the problem of the cold start latency remains the issue
concerning applications demanding low-latency reactions on a regular basis. By optimising the size of functions developers can
minimise the effects of cold start by limiting dependencies and by creating memory configurations strategically.

4.2. Cost Analysis

Price is a sensitive determinant in the assessment of serverless platforms, particularly scale or heavy-duty jobs. A standardized
configuration was used when carrying out cost analysis which was 1 million of the functions and each function invoked was of 128 MB
of memory and 100 milliseconds of execution time. The parameters indicate a typical usage scenario of the lightweight backend
services, e.g. restful APIs, microservice entrypoints, or event-driven calls. The conclusion of the ratio of costs in the three major

platforms, AWS lambda, Azure functions, and Google Cloud functions (GCF) is summarized in based on the analysis, it can be seen
that AWS Lambda is most cost-effective, and the total cost of the specified workload comprises 0.20 dollars. The cost of AWS per GB-
second and requests are a bit less per GB-second and request compared to the prices of the cloud providers, with stable pricing
policies, and a high tier of free usage. Its full-grown billing architecture, along with cost estimates tools and use dashboards, enables
easier cost predictability and optimization, which is perfect, given budget-saving developers or new businesses. Azure functions are the
second in affordability and its total cost is 0.22.

Although it is a bit costly compared to AWS Lambda, some features of Azure make it worth the extra cost as in enterprise

settings, such as good integration with on-premise-based environments, Microsoft products, DevOps tools, etc. Also, the Premium Plan
options provided by Azure are more expensive but, in some cases, they are worth using due to increased possibilities of performance

and scaling required by some apps. Google Cloud Functions (GCF) costs highest than the other two, coming in at at 0.24$ per
workload. It is slightly expensive because GCF has a pricing system, which entails slightly increased charge per GB-second and request.
Although Google serverless services are easily accessible and provisioned together with other GCP services, pricing is likely to affect the
appeal to users who are sensitive to cost of their applications. To conclude, all three platforms have the competitive price, with the
AWS Lambda being the most cost effective in terms of performance of lightweight, high-volume tasks in standard configurations.

4.3. Scalability

Serverless computing has several defining features like scalability, or it can be altered on demand with no aversion of manual
operations or infrastructure administration. Scalability in the research was a factor that tested how each platform reacted to high or
low demand by gradually increasing the rate of invocation serverless functions in AWS Lambda, Azure Functions, and Google Cloud
Functions (GCF). All of the three sites demonstrated linear scaling until around 1,000 requests per second (RPS), the performance of

which debases marginally with no significant changes in the execution time. This shows that the platforms can scale out dynamically
and the ways they can behave stably under medium to high degree of simultaneous loads. But when the invocation rate was greater

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

88

than 1,000 RPS, resource throttling, and spikes in cold starts and latency were starting to appear in all platforms. Throttling in AWS
Lambda is based on per-account quotas of concurrent executions and although it is very scalable, it may throttle requests once it
reaches the limit of the soft limit unless the soft limit is manually increased or via support. There was a visible rise in cold start with an
increase in Azure Functions especially in consumption plan and they could sometimes find functions to queue up as well when it was
forced beyond the concurrency limit. GCF also started queueing invocations and demonstrating greater response time at high loads,
especially when many functions were executing concurrently. The advanced options these three platforms provide to support their

scalability at extreme loads are provisioned concurrency (AWS), premium and dedicated plans (Azure), and regional resource tuning
(GCP). Their alternatives can offer more predictable performance, with the tradeoff of increased configuration effort, and more
complexity in prices.

In total, although serverless architecture can be scaled to a large number of requests in default settings, default servers have

limits on their upper performance capacity, and to reach it surpassing those limits, one actively should plan on them. These limitations
should guide developers in designing applications that have high throughput, and they need to put into consideration the uses of
concurrency controls, queue-based decoupling, and regional scale strategies to ensure reliability of applications at scale.

4.4. Discussion

Comparative analysis allows observing that AWS Lambda, Azure Functions, and Google Cloud Functions are suitable to handle

different needs depending on the priorities of a project like its performance, cost requirements, and work with the ecosystem inherited
by the platform. AWS Lambda has been constantly performing better in latency and cost efficiency of the cold start than the other
platforms, which makes it an attractive option when it comes to high throughput applications, sensitive to latency such as APIs and
microservices. It also is appealing due to its mature eco-system, extensive runtime support and powerful features like provisioned
concurrency and granular billing. Also, AWS provides the greatest number of integrations with server-less functionality- including S3,
DynamoDB, and Step Functions, making it easy for developers to construct highly scalable and event-driven systems with little
overhead. Azure Functions indicated the best integration within Microsoft world, which is likely to become the best option in case of
the enterprises which extensively use technologies such as Azure Active Directory, SQL Server, .NET, and Visual Studio.

Although its cold start latency proved the most significant compared to the three platforms, Azure has premium and dedicated

hosting services that can compensate this shortcoming but at an additional incurred cost. It has native features of Durable Functions,

Logic Apps, and smooth DevOps pipelines that provide the means of organizing and control complicated processes and application
lifecycle in enterprise environments. Google Cloud Functions (GCF) provided an experience which is easier to use with moderately
good performance and cost. It has a developer-friendly interface, simple deployment model, and innate compatibility with Google
Cloud services, which makes it perfect for companies and groups who want to develop and deploy their event-driven applications in a
timely matter. Its cold start times and cost were however slightly greater than that of AWS, and at high invocation rates, it was a bit
more difficult to manage its scaling. In short, AWS Lambda will best fit the performance-sensitive and cost-sensitive applications,
Azure functions will do the best in enterprise integration and workflow orchestration and GCF will be best fit in fast development and
moderate size applications with small operational complexity.

4.5. Optimization Recommendations

In order to optimize the efficiency and performance of serverless applications, some tricks can be applied to all leading
platforms. The best of the techniques is the use of provisioned concurrency in situations requiring latency-sensitive workload. The
option is provided in AWS Lambda and as well as in such solutions as the Azure Premium Plan and Google Cloud Run and guarantees
that the instances of the functions are never in a cold state and could be used immediately, therefore, essentially reducing the cold start
issues. This does require an extra layer, but it is absolutely something that must be done in any application where you want low and
predictable latency - things like APIs, auth services or apps the user talks to. The other best practice is to combine the conference-
related multiple functions into generic funs as much as you can. That way you should be able to reduce the number of cold starts
between different endpoints and share stuff like imported libraries and in it code as well. But, with that solution moderation needs to
be considered in terms of modularity and maintainability.

Even when that is the case, however, function splitting can still be desirable for fault isolation and clean code reasons, so this

technique should definitely not be abused without thinking about your use cases and traffic patterns. Besides, dynamic memory
adjustment and proactive monitoring make it cheaper and good performance guarantee. Developers can receive live feedback on the

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

89

duration a function to execute, how much memory it used, its error rate and bottlenecks and other performance information with
observability tools such as AWS X-Ray, Azure Application Insights and Google Cloud Operations Suite. Networked on this data, the
capability of functions to be adjusted in terms of configurations, such as adjusting memory allocations on the fly as the computing
needs of the functions change may then be exploited. Using increased memory does not only increase the available corpus, but
decreases the execution time, which further makes it less expensive, even though there would be increased cost level per second.
Finally, not all of the discussed optimization techniques can be utilized, however, they will assist developers in creating performant and

easily manageable serverless applications that will be more cost-effective and less prone to errors when the workload grows or the
complexity of the application imposed on the infrastructure expands.

5. Conclusion
Serverless computing has become one of the game-changers of today when it comes to the deployment of cloud-based

applications, thus providing developers with an opportunity to create and execute applications in a manner that does not require

infrastructure management. That is largely due to the inherent properties of it, namely, on-demand scalability, fine-grained billing,
and lower operational overheads, which makes it especially appealing to dynamic, event-driven, and microservices-oriented
workloads. This paper gave an in-depth analysis of serverless platforms by looking at deployment trends, key performance indicators,
and cost analysis in AWS Lambda, Azure Functions, and Google Cloud Functions. The study has shown that serverless platforms are
best suited to support bursty and unpredictable workloads due to serverless platform responding to traffic almost instantly, by scaling.
The experimental deployment and test showed however that all these platforms were able to scale linearly to a certain point (in our
case about 1000 requests per second) after which the performance began to diminish as a result of throttling or cold start delays.
When compared according to their cold start latency performance and price, AWS Lambda was the most effective solution to use
especially when dealing with latency-sensitive applications. Azure Functions provided enterprise level integration especially to those
users who used the Microsoft ecosystem, but it was more prone to higher cold start times. Google Cloud Functions is a little pricier, but
offers a fairly pleasant deployment model, good integration with Google services, and as such can be reasonable choice for smaller

teams and in cases of rapid prototyping.

Nevertheless, the paper also outlined a number of issues that are associated with serverless computing. It is interesting to note

that cold start latency can be an issue to applications that have a low-latency requirement and predictable costs within frequent high
execution time or widespread invocation rates can hardly be predicted. It is possible to overcome these drawbacks with the help of the
techniques of provided concurrency and bundle functions along with the dynamic resource tuning that was elaborated in detail and the
practical suggestions were given.Going into the future, hybrid cloud combinations of serverless computing and container orchestration
frameworks such as Kubernetes are an optimistic research domain to focus on in the future. These architectures would be able to take
advantage of the best of both worlds: the ease and flexibility of serverless to cover front-end or even event-driven parts; and the
controlled nature and predictability of containers on computing-heavy and long-lasting jobs. Advancement of these technologies
combined with hybridization will ensure organizations reach a perfect mix of performance, affordability, and scalability in developing

cloud-native applications.

References
[1] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., ... & Suter, P. (2017). Serverless computing: Current trends and open problems.

In Research advances in cloud computing (pp. 1-20). Singapore: Springer Singapore.
[2] Castro, P., Ishakian, V., Muthusamy, V., & Slominski, A. (2019). The rise of serverless computing. Communications of the ACM, 62(12), 44-54.
[3] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q., ... & Patterson, D. A. (2019). Cloud programming simplified: A

berkeley view on serverless computing. arXiv preprint arXiv:1902.03383.
[4] McGrath, G., & Brenner, P. R. (2017, June). Serverless computing: Design, implementation, and performance. In 2017 IEEE 37th International

Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 405-410). IEEE.
[5] Wang, L., Li, M., Zhang, Y., Ristenpart, T., & Swift, M. (2018). Peeking behind the curtains of serverless platforms. In 2018 USENIX annual

technical conference (USENIX ATC 18) (pp. 133-146).
[6] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., & Pallickara, S. (2018, April). Serverless computing: An investigation of factors influencing

microservice performance. In 2018 IEEE international conference on cloud engineering (IC2E) (pp. 159-169). IEEE.
[7] Adzic, G., & Chatley, R. (2017, August). Serverless computing: economic and architectural impact. In Proceedings of the 2017 11th joint meeting

on foundations of software engineering (pp. 884-889).
[8] Spillner, J., Mateos, C., & Monge, D. A. (2017, September). Faaster, better, cheaper: The prospect of serverless scientific computing and hpc. In

Latin American High Performance Computing Conference (pp. 154-168). Cham: Springer International Publishing.

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

90

[9] Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy, V., Rabbah, R., ... & Tardieu, O. (2017, October). The serverless trilemma: Function
composition for serverless computing. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (pp. 89-103).

[10] Jangda, A., Pinckney, D., Brun, Y., & Guha, A. (2019). Formal foundations of serverless computing. Proceedings of the ACM on Programming
Languages, 3(OOPSLA), 1-26.

[11] Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based architectures. Future Generation Computer
Systems, 83, 50-59.

[12] Shafiei, H., Khonsari, A., & Mousavi, P. (2022). Serverless computing: a survey of opportunities, challenges, and applications. ACM Computing
Surveys, 54(11s), 1-32.

[13] Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in
information systems. MIS quarterly, 21-54.

[14] Silva, P., Fireman, D., & Pereira, T. E. (2020, December). Prebaking functions to warm the serverless cold start. In Proceedings of the 21st
international middleware conference (pp. 1-13).

[15] Trejos-Zelaya, I., & Flores-González, M. (2021). Cloud Function Performance: a component modeling approach. CLEI Electronic Journal, 24(2), 6-
1.

[16] Verma, P., Goel, P., & Rani, N. (2024, April). A Review: Cold Start Latency in Serverless Computing. In 2024 Sixth International Conference on
Computational Intelligence and Communication Technologies (CCICT) (pp. 141-148). IEEE.

[17] Moreno-Vozmediano, R., Huedo, E., Montero, R. S., & Llorente, I. M. (2023). Latency and resource consumption analysis for serverless edge
analytics. Journal of Cloud Computing, 12(1), 108.

[18] Bangera, S. (2018). DevOps for Serverless Applications: Design, deploy, and monitor your serverless applications using DevOps practices. Packt
Publishing Ltd.

[19] Lin, C., & Khazaei, H. (2020). Modeling and optimization of performance and cost of serverless applications. IEEE Transactions on Parallel and
Distributed Systems, 32(3), 615-632.

[20] Bardsley, D., Ryan, L., & Howard, J. (2018, September). Serverless performance and optimization strategies. In 2018 IEEE International
Conference on Smart Cloud (SmartCloud) (pp. 19-26). IEEE.

[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric
Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-
55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International
Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging
Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData,
Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of
Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[26] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData,
Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[29] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-
83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[30] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging
Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[31] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging
Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[32] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and
Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[33] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[34] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of
Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[35] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

91

[36] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management
Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[37] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and
Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113.
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[38] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of
Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[39] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence,
Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[40] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with
Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-
61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[41] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal of Emerging Research in
Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-V4I4P111

[42] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of
AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[43] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and
Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[44] Tekale, K. M., & Enjam, G. reddy. (2023). Advanced Telematics & Connected-Car Data. International Journal of Emerging Trends in Computer
Science and Information Technology, 4(1), 124-132. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114

[45] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer
Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115

[46] Rusum, G. P., & Anasuri, S. (2024). AI-Augmented Cloud Cost Optimization: Automating FinOps with Predictive Intelligence. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(2), 82-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P110

[47] Enjam, G. R., & Tekale, K. M. (2024). Self-Healing Microservices for Insurance Platforms: A Fault-Tolerant Architecture Using AWS and
PostgreSQL. International Journal of AI, BigData, Computational and Management Studies, 5(1), 127-136. https://doi.org/10.63282/3050-
9416.IJAIBDCMS-V5I1P113

[48] Kiran Kumar Pappula, "Transformer-Based Classification of Financial Documents in Hybrid Workflows" International Journal of
Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 48-61, 2024.

[49] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[50] Partha Sarathi Reddy Pedda Muntala, "Enterprise AI Governance in Oracle ERP: Balancing Innovation with Risk" International Journal of
Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 62-74, 2024.

[51] Sandeep Kumar Jangam, Partha Sarathi Reddy Pedda Muntala, "Comprehensive Defense-in-Depth Strategy for Enterprise Application Security"
International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[52] Karri, N. (2024). ML Algorithms that Dynamically Allocate CPU, Memory, and I/O Resources. International Journal of AI, BigData, Computational
and Management Studies, 5(1), 145-158. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P115

[53] Tekale, K. M., Rahul, N., & Enjam, G. reddy. (2024). EV Battery Liability & Product Recall Coverage: Insurance Solutions for the Rapidly
Expanding Electric Vehicle Market. International Journal of AI, BigData, Computational and Management Studies, 5(2), 151-160.
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115

[54] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal
of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[55] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging
Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[56] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging
Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[57] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI,
BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International
Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[59] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging
Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[60] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in
Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[61] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71.
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111
https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107
https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P115
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

*
Sunil Anasuri [2025] Serverless Architecture Patterns: Deployment, Cost, and Latency Analysis

92

[62] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of
Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[63] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational
and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[64] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch
Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-
9416.IJAIBDCMS-V3I4P108

[65] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business
Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95. https://doi.org/10.63282/3050-
9262.IJAIDSML-V3I4P110

[66] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[67] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer
Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[68] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur.
International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.IJERET-V3I2P111

[69] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging
Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[70] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in
Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111

[71] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and
Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[72] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and
Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-
100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[73] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use
Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-
V4I3P110

[74] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging
Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[75] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using
Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-
106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[76] Tekale , K. M. (2023). AI-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[77] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer
Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

[78] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-Augmented
Generation (RAG). International Journal of AI, BigData, Computational and Management Studies, 5(4), 124-136. https://doi.org/10.63282/3050-
9416.IJAIBDCMS-V5I4P113

[79] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence,
Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[80] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[81] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of
AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[82] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111

[83] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and
Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78.
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

[84] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and
Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-
9416.IJAIBDCMS-V5I3P115

[85] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer
Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113

https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

