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1. Introduction 

1.1. Background 
Due to the fast development of the cloud computing, the process of application design, implementation, and maintenance has 

been drastically modified. In a classical server-based architecture, developers and operations teams had the responsibility of 
provisioning, server configuration, scaling, and ensuring availability, which usually took a lot of time, resources as well as expertise. [1-
4] With the increasing demands of higher agility and scalability, cloud providers came up with virtualization and containerization 
technology to ease management of the infrastructure. Nevertheless, these still entailed certain degree of maintenance and 
orchestration of the servers. Serverless computing, which was especially debuted in 2014 with the initiation of AWS Lambda, further 

advanced the abstraction to a highly significant level. Serverless allows you to run code in response to backend events without 
worrying about server infrastructure. Task like provisioning, scaling, patching and capacity planning need not be worried by the cloud 
service provider in this context. The difference means the average developer will be able to focus only on writing and deploying 
business logic, providing for a faster software development cycle, a more efficient use of resources, and smooth operation. As a result, 
serverless has been one of the dominant design patterns in cloud native applications. 
1.2. Importance of Serverless Architecture 

Abstract:  

Serverless as one of the promising cloud computing technologies, Serverless allows resources to be 
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event-driven deployment, and charge at a very fine-grain level through the advent of Function-as-
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overview of serverless architecture including its deployment models, cost considerations and 

changes in latency. Some of the following deployment patterns to be discussed in this paper will 
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and Google Cloud Functions are compared. Cold start latency, execution time, and scalability are 
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high-performance and real-time systems. 
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Serverless architecture is the buzz in today’s application development that offers a lot of benefits over the traditional server-
based deploy or even compared to the containerized applications. It has great influence on multiple dimensions of software 
engineering, including scalability, cost effectiveness, time-to-market and ease of operation. 

 

 
Figure 1. Importance of Serverless Architecture 

 
1.2.1. Enhanced Developer Productivity 

One of the advantages of serverless computing is that, developers can entirely focus on running code implementation and 
offload the responsibility to provision, scale and maintain servers to serverless platform. Serverless makes more sense for Agile teams 
and the ever-shortening development cycles of CI-CD, as it shortens end-to-end dev time and reduces your go-to-market window 
phenomenally. 

 
1.2.2. Automatic and Seamless Scalability 

Functions are scaled automatically by servers platforms due to on-flow traffic. The stack scales from 1 to 1000s of requests per 

second and nothing is started manually; resources are allocated dynamically. This plasticity makes it very apropos to apply for 
constantly unpredictable and spiky load applications (web services, Internet of Things backends, event-driven pipelines). 

 
1.2.3. Cost Efficiency 

Serverless payments are pay-per-use as opposed to traditional architectures where you have to pay even if the servers aren’t 
being used. Function users are only charged based on exactly how long functions take to run and the resources they consume. Not 
charging by the hour PCCW--by how many minutes, can be a big savings in costs, especially where usage is sporadic or with application 
usages that might have rough estimates for continuous workloads. 

 
1.2.4. Improved Resilience and Fault Tolerance 

Serverless systems are also extremely reliable and have a high availability, while fault tolerance is the default mode. The 

functioning infrastructure is provided by the cloud provider to manage and reproduce along with offering resilient failure recovery, 
geographic redundancy and low downtime without the user demanding a complicated configuration process. 

 
1.2.5. Simplified Operations and Maintenance 

Serverless relieves the DevOps workforce by an enormous margin by transferring the challenges of operating servers such as 
capacity planning, software updates and load balancing to the cloud provider. This results in a reduced number of operational 
incidents, reduced deployment pipelines, and maintenance of the application lifecycle. 

 
1.3. Patterns: Deployment, Cost, and Latency Analysis 

Serverless processing can understand a range of distribution designs with important effects on use techniques, cost designs and 
performances specifically late. [5,6] Microservices Orchestration, Fan-out/Fan-in and Event Stream Processing are among the common 

serverless deployment patterns. Each pattern is applied to different functional requirements, data flow processes and costs associated 
therewith and the implications of these patterns are not the same. For instance, microservices orchestration, a way of combining 
several small and single function with assistance from the likes AWS Step Functions or Azure Durable Functions. This architecture 
carries better modularity and maintainability advantages, but could carry more cost and latency with inter-function communication 
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logic or state management. Fan-out/Fan-in pattern, on the other hand is set up to parallelize, we call several functions at once and 
collect their work back together. While it improves scalability and reduces total processing time, it results in more invocations which 
might impact overall monetary cost especially when considering the billing strategy that is used at the platform side. The price model 
in serverless architecture (pay-per-use) results in complex cost analysis, based on execution time, memory and invocations among 
other factors. Based on this fact, if designs require many small functions, even if these functions are lightweight the cost of achieving 
them can be high. Conversely, overhead in billing can be minimized through the bundling of functions or by optimizing execution time. 

The latency study also matters, in part because cold starts can significantly impact the runtime performance when functions are 
invoked after an extended period of idle time. Other applications that perform rare but high QPS functions such as fan-in aggregation 
in analytics systems can be particularly susceptible to cold-start longtail delays. Choosing how to design your serverless application can 
be guided by these analyses from deployment complexity, cost and latency behavior when the patterns are used. Suitable pattern 
selection, of the load and performance objectives is a key step on achieving benefits of serverless computing. 

 

2. Literature Survey 
2.1. Evolution of Serverless Computing 

Right Place, Right Time Serverless computing came out of a broader shift toward microservices and containerization that 
prioritized breaking down app deployments into smaller, more efficient pieces. [7-10] - Early-generation cloud computing systems 
were essentially VM-based, where the developer was responsible for running OSes and runtime systems. The next development was 
containers, which provided less cumbersome environments in terms of portability, such as Docker and Kubernetes technologies. The 
last one was the introduction of Function-as-a-Service (FaaS) platforms that eliminated management of infrastructure completely. 
Works like those that track such evolution and point out that serverless computing allows developers to work completely in terms of 
code and event-driven architecture without worrying much about the operational workload. 

 
2.2 Key Providers and Platforms 

Other leading cloud vendors have created their custom serverless environments and have varying capabilities and language 
support. AWS Lambda is the oldest available FaaS framework, introduced in the year 2014 and it is not limited to a single 
programming language with it serving broad variety of languages such as node.js, python, java and many others. In 2016 Microsoft 
introduced Azure Functions that provides C#, JavaScript, Python, etc., and integrates tightly with the rest of the Azure platform. In 
2017, Google Cloud Functions were released that supported Node.js, Python and Go, and aimed at being simple to use and integrated 
with other Google Cloud services. These platforms have contrasting characteristics with respect to the view of performance, pricing, 
scaling choices, and the assimilation into the ecosystem, which affect how appropriately they might be applied to diverse application 
settings. 

 
2.3. Performance Benchmarks 

Serverless computing partly depends on performance, especially cold start latency. McGrath and Brenner made intricate 

benchmarking research of which they found large variability in time taken to do cold starts based on the provider and the language 
spoken. Cold starts are the duration that is required to initialize a new instance of a procedure with no warm containers. They found 
that the latency might be as minimal as 100 milliseconds up to some several seconds, and that might be disastrous in the user 
experience of latency-sensitive applications. Examples of the factors affecting the cold start time are the size of the function package, 
the logic to be initialized and the technology underlying the virtualization. 

 
2.4. Cost Efficiency Studies 

In many implementations, serverless computing has been promoted as cost-effective, especially on workload with non-
predictable or infrequent workload consumption. Jonas et al. note that serverless models are much more cost-effective to run bursty, 
event-driven applications because their cost model is pay-per-use, meaning that they are only charged on real-life consumption and 
the actual time of the functions themselves. This negates the idle resource cost associated with VM-based or container-based systems. 

Yet their paper observes that the cost advantage also disappears, as seen in long-term applications or those with a heavy and sustained 
utilization. In such cases customary deployments with VMs or containers may cost less because of their fixed pricing and resource 
quotas. 
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2.5. Latency Challenges 
There are a number of challenges presented by serverless computing, as good as they might be. There are immediate and well-

known problems with these – the most severe being the cold start issue with lack of immutability of function instances. Furthermore, 
the network overhead is often an issue with serverless functions since they tend to need to communicate directly with external APIs or 
databases a great deal and are not able to use local state or caching which exacerbates that point. As a consequence of these issues, 
several approaches to address them have been proposed. AWS has a provisioned concurrency model; it keeps a set number of cold 

functions live all the time, keeping embodiment really cold but without too much additional latency to receive requests. Developers are 
given help to keep the functions 'warmed-up' via plugins, or scheduled invocations as well. But previous solutions are admitted to be a 
set of compromises between cost and performance. 

 

3. Methodology 
3.1. Research Design 

The research will be mixed-method in nature, employing both qualitative and quantitative designs to conduct a comprehensive 
evaluation of serverless computing platforms. In this project we plan to compare these three players with respect to performance, 
latency and cost. [11-13] Combining simulations and actual deployment testing allows for reasonable, repeatable finding to be gathered 
for practical use scenarios. One of them, the quantitative aspect involves collection of empirical data from controlled experiments. They 
involve running of the same workloads on all three platforms and measuring the cold start time, the task execution time, resource used 
by it and the amount spent for it. In order to have a wide range in performance, benchmarks are executed at different environments 
(e.g., languages, memory invoking frequencies) as well. The statistical treatment of results obtained from the data will serve to reveal 
the difference, trend and strength or weakness when compared to the other platforms. On the qualitative matters, are considered 
developers experience, deployment complexity, debugging facilities and platform characteristics that may influence the situation in 
terms of usability and productivity. These will be noted during testing and a detailed review of all documentation and support tools 
available from each vendor. Development barriers confronted at the packaging functions; third party integration and runtime are also 

documented to present aspects of actual development. Its slapdash treatment of performance and ease-of-use leaves a lot to be desired 
when it comes to understanding what serverless platforms are actually like to use. Additionally, the simulation tools are used to 
simulate bursty traffic patterns and long-running tasks in order to repeat the stress testing without consuming much cloud resources. 
A simulated environment may complement real deployment testing, as well as explore interesting edge cases and scaling limits 
without risk. Overall, the mixed methods design ensures that the research process does not just measure performance in terms of 
technical suitability, but also looks at whether the offering is viable for practitioners with practical dynamics, and while it does not deal 
with one developer looking forward and as such makes the research work more viable on paper for both cloud computing practitioners 
and researchers. 

 
3.2. Deployment Patterns Evaluated 

 
Figure 2. Deployment Patterns Evaluated 

 
3.2.1. Microservices Orchestration 

In this model, serverless functions are layered to help execute a manageable but complex flow across several serverless 
functions each one focused on single functionality. Knobs to orchestrate how to run the flow, like sequencing, divergence and failure 
handling are typically provided even at infrastructure/execution layer by tolls like AWS Step Functions, Azure Durable Functions, 
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Google Workflows. It is this pattern that can be particularly useful when applications need processing that involves multiple steps as it 
can allow modularity of design, excellent fault isolation, and maintenance of individual services. 
 
3.2.2. Fan-out/Fan-in 

The fan-out/fan-in structure consists of calling several functions simultaneously in order to run tasks in parallel and combine 
the output. It is predominantly applied to data processing pipeline, image transformations or parallel calculation. An example is that a 

parent function can invoke multiple child functions at the same time to process data in chunks and when all are ready, the parent sums 
up the results. This is the pattern that demonstrates the best performance and scalability, although it has to be organized carefully to 
managing concurrency limitations and consistency of its results. 

 
3.2.3. Event Stream Processing 

Serverless event stream processing processes data events in real-time based on event-driven triggers generated by a different 
source (e.g. message queues such AWS Kinesis, Azure Event Hubs, Google Pub/Sub). Functions are run automatically when new events 
are released, thus the processing of logs or metrics, or user generated content can be near-real time. This is the best pattern to be used 
on real-time analysis, monitoring and alerting systems. Making it highly scaleable and responsive, there is also added complexity of 
handling concurrency of functions and message sequencing. 

 

3.3. Experimental Setup 
The structure of the experiment was well thought out so that the evaluation of the selected serverless platforms (AWS Lambda, 

Azure functions, and Google Cloud functions) could be the same, fair, and repeatable. [14-16] All the platforms were set up with 
identical ranges of parameters to reduce the variability introduced because of the non-homogenised platforms. the major parameters 
used to test the system configuration. Memory size was configured between 128MB and 2048MB, so we may observe the behavior of 
performance and cost-efficiency to resource provisioning. This range was selected since memory allocation in serverless functions can 
directly impact on the amount of CPU and I/O throughput, such that it can hit very low and fairly heavy cases. The task size of each of 
the functions was set to between 100 milliseconds and 900000 milliseconds (15 minutes) as the maximum support of executions in 
AWS Lambda and other platforms is similar. This spectrum was vital to test the functions with short-living jobs such as the REST API 
end points and long running jobs such data transformation and image image processing. Repeated workloads with varying 
configurations were run to obtain consistent metrics of cold start latencies, run times and billing expenses. Two major test workloads 

were identified to represent realistic workload scenarios in the current cloud-native applications. The initial workload was of 
processing of image, which is computationally expensive and best suited to test concurrency, CPU bound actions and memory 
management. The second piece of workload was REST API simulation, covering both simple CRUD operations and data fetching tasks 
to simulate some typical web backend actions. These different workloads were then invoked and executed on each individual platform 
using the same source code and invocation logic so that a fair comparison could be made. Performance execution metrics were 
achieved by monitoring and logging tools depend on the respective cloud provider. 

 
3.4. Metrics 

 
Figure 3. Metrics 

 
3.4.1. Cold Start Time (Tcs) 

Cold start time denotes the slowdown that is realized when a serverless function is first called upon after some time of 
inactivity, and requires a supplier of resources, kernel start-up, and loading of the code of the particular worked-on. This measure is 
very important in latency-sensitive applications that have a tendency of adding up a few hundred milliseconds to several seconds. Tcs 
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measurements can be used to assess responsiveness of every platform when invoked at a first time or at infrequent intervals and is an 
indication of how well a platform initiates containers. 
 
3.4.2. Warm Start Time (Tws) 

Warm start time required to perform a serverless job the time when it is called quickly after a preceding experience and the 
runtime environment is as yet productive. The warm starts are much faster compared with cold starts since the infrastructure is 

initialized. The field of measuring Tws informs how well a platform is likely to perform in a worst-case or "high latency" scenario and 
is helpful when one wants to know how well an application can easily and cheaply accommodate switching among artificially frequent 
or artificially bursty tasks. 

 
3.4.3. Execution Duration (Td) 

Execution duration- The actual time that the function currently executes user code. This metric is referred as Td and comprises 
processing logic, external API calls, and I/O. It directly effects your billing and the response speed of your application, because in most 
serverless platforms there is a pay-per-request or pay-per-call charging method. When Td is analyzed under varying workloads and 
configurations, performance efficiency and utilization of resources is disclosed. 
 
3.4.4. Total Cost (C) 

Total cost (C) measures the financial charge associated with running the serverless function taking memory allocation, the 
amount of time it takes the function to complete, and the quantity of invocations as the potential factors that influence it. This measure 
is critical to understanding the economic viability of serverless deployment, in particular large scale or long running applications. The 
research compares the overall cost of the platforms and workload types to determine the most affordable an individual might get using 
different conditions of use. 
 
3.5. Cost Calculation Formula 
The billing of the serverless computing is based on the appropriate synthesis of resource consumption, the length of the executions, 
and the number of invocations. [17-20] The pricing construct applied by the majority of significant platforms like AWS Lambda, Azure 
Functions, and Google Cloud Function is built on two major elements, including the compute cost and cost per request. The cost to 
compute is estimated according to the amount of the memory dedicated to a function and the function execution time expenditure, 

whereas the request cost calculates the number of calls to a function. General cost calculation formula can be written as: 
C = (M × Td × Pm) + (N × Pr) 
Where: 
C is the total cost, 
M is the memory allocated (in GB), 
Td is the execution duration (in seconds), 
Pm is the price per GB-second (platform-specific), 
N is the number of invocations, 
Pr is the price per invocation (platform-specific). 
 

This formula gives another pattern of generalizing the price that serverless workloads run on various platforms. As an example, 
AWS Lambda (as of the recent pricing) will cost $0.00001667 per GB-second and $0.20 per 1 million requests. That is, in a case where 
the function saves 512MB (0.5GB) memory, takes 1 second, and is called 1 million times, the cost of computation would be: 0.5 x 1 x 
0.00001667 x 1,000,000 = 8.34. The 0.20 request added puts the total cost to $8.54. This formulation enables designers and 
practitioners to compare the efficiency when they are designed/operate on different resource costs with serverless functions of diverse 
computations/workloads at deployment. It also demonstrates what happens when we reduce the memory and processing time. An as 
similar equivalent approach adopted by this study in order to keep a fair relation of cost between various test workloads and platforms 
to avoid biases as much as possible and get insights for even potential server side-specific strategic decisions. 
 
3.6. Tools Used 
3.6.1. Apache JMeter for Load Testing  

To create concurrent requests and simulate traffic of users, Apache JMeter was used. It supported deep load testing by giving 
the possibility of setting a different invocation rate, payload size, and concurrency. This assisted in testing each of the serverless 
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platforms in handling high-load situations concurring performance bottlenecks and gauging reaction times during a stress condition. 
The ability of JMeter to be extended and give real-time reporting capabilities provided it to be used to obtain reproducible and scalable 
test scenarios. 
 
3.6.2. AWS X-Ray for Tracing 

The performance of functions on the AWS Lambda stage was traced and analyzed with the help of AWS X-Ray. It had rich 

traceability of request patterns, function execution times, downstream service calls (e.g DynamoDB, S3), and errors. Trace maps and 
visual timelines of X-Ray were key to the identification of cold starts, delays and unsuccessful completion. It assisted in identifying 
performance faults and awareness of how distributed elements in the AWS environment communicate with each other in executing 
functions. 
 

 
Figure 4. Tools Used 

 
3.6.3. Azure Application Insights 

The major observability tool suggested in the case of monitoring functions on use of the Azure Function was Azure application 
Insights. It provided an end-to-end telemetry about the execution of functions with metrics of requests per minute, failures per minute, 
response time and dependency tracing. Owing to such features as the stream of live performance metrics, the ability creates custom 
log and anomaly detection powered by AI, Application Insights proved useful to gain insight into the runtime behavior as well as 

performance trends and enhance reliability and efficiency during the tests. 
 

3.6.4. Google Stackdriver 
Google Cloud Functions could be monitored and diagnosed using Google Stackdriver implemented into Google Cloud Platform 

and later into the Cloud Operations Suite. It had logging, measures, and tracing support and provided central visibility into the flow of 
execution and faults. Real-time dashboards and alerts provided by Stackdriver helped to determine the system health, cold start effects, 
and confirm how workload behaves in various testing conditions. 

 
3.7. Flowchart of Methodology 

 
Figure 5. Flowchart of Methodology 
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3.7.1. Select Pattern 
At the initial stage of the research methodology, it is important to pick a certain serverless deployment pattern. This involves 

the selection of some of the more common architectures (i.e. Microservices Orchestration, Fan-out/Fan-in, as well as, Event Stream 
Processing). Every pattern is an application model with varying performances and scalability attributes. The choice of the pattern 
determines the structure of the functions, the way that functions may interact and also the kind of workloads which will be tested. This 
is done to make the research be realistic in terms of application scenarios and easy to compare any cloud platform with another. 

 
3.7.2. Deploy on 3 Clouds 

After the choice of the pattern, the second step is to deploy the implementation of the serverless into three big clouds (AWS 
lambda, Azure functions and Google cloud functions). All the three platforms will be tested on the same code and setting to achieve 
consistency and fairness with evaluation. Deployment involves the provision of required triggers, access, and supplementary services. 
The cross-platform deployment allows simultaneous testing of the way each of the cloud providers performs the same workload in a 
comparable environment. 

 
3.7.3. Measure Metrics (Tcs, C) 

Once the applications are implemented, the measurements of the most essential cost and performance indicators are made. 
These are Cold Start Time (Tcs) to measure how long it takes the startup and the Total Cost (C) to measure how much money is spent. 

Apache JMeter, AWS X-Ray, Azure Application Insights, and Google Stackdriver are tools with which specific execution information is 
collected. This will require controlled testing and results measurements are achieved by tracing execution, logs and billing information 
to determine the behavior of each platform at different workloads and different invocation patterns. 

 
3.7.4. Analyze Trade-offs 

The last would be to study the trade-off between its performance and cost among the platforms and deployment patterns. That 
would incorporate the interpretation of data collected so as to gain insights regarding weakness and strengths, such as which provider 
has faster cold start, or which one is cheaper in the distribution of specific patterns. This is aimed at giving practical measures of which 
server less platform developers and architects should adopt as per the type of workload, performance requirements and the budgetary 
investment limitation. 

 

4. Results and Discussion 
4.1. Cold Start Latency 

Table 1. Cold Start Latency 

Platform Average Cold Start (ms) 
AWS Lambda 400 

Azure Functions 900 

GCF 750 

 

 
Figure 5. Graph Representing Cold Start Latency 
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4.1.1. AWS Lambda 
The average cold start latency across the three platforms was the lowest in AWS Lambda, with the average of 400 milliseconds. 

The cold start here is comparatively quick, which can be explained by the fact that the AWS infrastructure is long-established and the 
serverless architecture provides a handful of optimizations such as provisioned concurrency and effective runtime management. 
Likewise, AWS also allows using a wide range of runtimes, and provides flexibility in wrapping and deployment of functions, both of 
which can affect cold start behaviour. This benchmark position AWS Lambda to be a good fit to latency-sensitive workloads including 

APIs and real-time data processing. 
 

4.1.2. Azure Functions 
On average, Azure Functions had the worst cold start latency with a value of 900 milliseconds. Although Azure offers farm-

strength capabilities such as Durable Functions and the smooth interaction with the rest of the Azure environment, it cannot perform 
as well regarding the cold start as its rivals. The latency is particularly observable where cold starts have been used in consumption 
plans with C# or .NET Core runtimes. In spite of Azure providing Premium and Dedicated plans in its attempt to minimize cold starts, 
they are associated with additional expenses. In time-sensitive applications, a developer may have the necessity to consider such 
options or make better use of deployment options. 

 
4.1.3. Google Cloud Functions (GCF) 

Google Cloud Functions is optimistically average with a cold start latency of 750 milliseconds that fits between AWS and Azure 
with performance. The advantage of using GCF with the global infrastructure of Google and supporting the lightweight runtimes, such 
as Node.js and Go that often have shorter initialization processes. Nevertheless, the problem of the cold start latency remains the issue 
concerning applications demanding low-latency reactions on a regular basis. By optimising the size of functions developers can 
minimise the effects of cold start by limiting dependencies and by creating memory configurations strategically. 

 
4.2. Cost Analysis 

Price is a sensitive determinant in the assessment of serverless platforms, particularly scale or heavy-duty jobs. A standardized 
configuration was used when carrying out cost analysis which was 1 million of the functions and each function invoked was of 128 MB 
of memory and 100 milliseconds of execution time. The parameters indicate a typical usage scenario of the lightweight backend 
services, e.g. restful APIs, microservice entrypoints, or event-driven calls. The conclusion of the ratio of costs in the three major 

platforms, AWS lambda, Azure functions, and Google Cloud functions (GCF) is summarized in  based on the analysis, it can be seen 
that AWS Lambda is most cost-effective, and the total cost of the specified workload comprises 0.20 dollars. The cost of AWS per GB-
second and requests are a bit less per GB-second and request compared to the prices of the cloud providers, with stable pricing 
policies, and a high tier of free usage. Its full-grown billing architecture, along with cost estimates tools and use dashboards, enables 
easier cost predictability and optimization, which is perfect, given budget-saving developers or new businesses. Azure functions are the 
second in affordability and its total cost is 0.22.  

 
Although it is a bit costly compared to AWS Lambda, some features of Azure make it worth the extra cost as in enterprise 

settings, such as good integration with on-premise-based environments, Microsoft products, DevOps tools, etc. Also, the Premium Plan 
options provided by Azure are more expensive but, in some cases, they are worth using due to increased possibilities of performance 

and scaling required by some apps. Google Cloud Functions (GCF) costs highest than the other two, coming in at at 0.24$ per 
workload. It is slightly expensive because GCF has a pricing system, which entails slightly increased charge per GB-second and request. 
Although Google serverless services are easily accessible and provisioned together with other GCP services, pricing is likely to affect the 
appeal to users who are sensitive to cost of their applications. To conclude, all three platforms have the competitive price, with the 
AWS Lambda being the most cost effective in terms of performance of lightweight, high-volume tasks in standard configurations. 

 
4.3. Scalability 

Serverless computing has several defining features like scalability, or it can be altered on demand with no aversion of manual 
operations or infrastructure administration. Scalability in the research was a factor that tested how each platform reacted to high or 
low demand by gradually increasing the rate of invocation serverless functions in AWS Lambda, Azure Functions, and Google Cloud 
Functions (GCF). All of the three sites demonstrated linear scaling until around 1,000 requests per second (RPS), the performance of 

which debases marginally with no significant changes in the execution time. This shows that the platforms can scale out dynamically 
and the ways they can behave stably under medium to high degree of simultaneous loads. But when the invocation rate was greater 
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than 1,000 RPS, resource throttling, and spikes in cold starts and latency were starting to appear in all platforms. Throttling in AWS 
Lambda is based on per-account quotas of concurrent executions and although it is very scalable, it may throttle requests once it 
reaches the limit of the soft limit unless the soft limit is manually increased or via support. There was a visible rise in cold start with an 
increase in Azure Functions especially in consumption plan and they could sometimes find functions to queue up as well when it was 
forced beyond the concurrency limit. GCF also started queueing invocations and demonstrating greater response time at high loads, 
especially when many functions were executing concurrently. The advanced options these three platforms provide to support their 

scalability at extreme loads are provisioned concurrency (AWS), premium and dedicated plans (Azure), and regional resource tuning 
(GCP). Their alternatives can offer more predictable performance, with the tradeoff of increased configuration effort, and more 
complexity in prices.  

 
In total, although serverless architecture can be scaled to a large number of requests in default settings, default servers have 

limits on their upper performance capacity, and to reach it surpassing those limits, one actively should plan on them. These limitations 
should guide developers in designing applications that have high throughput, and they need to put into consideration the uses of 
concurrency controls, queue-based decoupling, and regional scale strategies to ensure reliability of applications at scale. 

 
4.4. Discussion 

Comparative analysis allows observing that AWS Lambda, Azure Functions, and Google Cloud Functions are suitable to handle 

different needs depending on the priorities of a project like its performance, cost requirements, and work with the ecosystem inherited 
by the platform. AWS Lambda has been constantly performing better in latency and cost efficiency of the cold start than the other 
platforms, which makes it an attractive option when it comes to high throughput applications, sensitive to latency such as APIs and 
microservices. It also is appealing due to its mature eco-system, extensive runtime support and powerful features like provisioned 
concurrency and granular billing. Also, AWS provides the greatest number of integrations with server-less functionality- including S3, 
DynamoDB, and Step Functions, making it easy for developers to construct highly scalable and event-driven systems with little 
overhead. Azure Functions indicated the best integration within Microsoft world, which is likely to become the best option in case of 
the enterprises which extensively use technologies such as Azure Active Directory, SQL Server, .NET, and Visual Studio.  

 
Although its cold start latency proved the most significant compared to the three platforms, Azure has premium and dedicated 

hosting services that can compensate this shortcoming but at an additional incurred cost. It has native features of Durable Functions, 

Logic Apps, and smooth DevOps pipelines that provide the means of organizing and control complicated processes and application 
lifecycle in enterprise environments. Google Cloud Functions (GCF) provided an experience which is easier to use with moderately 
good performance and cost. It has a developer-friendly interface, simple deployment model, and innate compatibility with Google 
Cloud services, which makes it perfect for companies and groups who want to develop and deploy their event-driven applications in a 
timely matter. Its cold start times and cost were however slightly greater than that of AWS, and at high invocation rates, it was a bit 
more difficult to manage its scaling. In short, AWS Lambda will best fit the performance-sensitive and cost-sensitive applications, 
Azure functions will do the best in enterprise integration and workflow orchestration and GCF will be best fit in fast development and 
moderate size applications with small operational complexity. 

 
4.5. Optimization Recommendations 

In order to optimize the efficiency and performance of serverless applications, some tricks can be applied to all leading 
platforms. The best of the techniques is the use of provisioned concurrency in situations requiring latency-sensitive workload. The 
option is provided in AWS Lambda and as well as in such solutions as the Azure Premium Plan and Google Cloud Run and guarantees 
that the instances of the functions are never in a cold state and could be used immediately, therefore, essentially reducing the cold start 
issues. This does require an extra layer, but it is absolutely something that must be done in any application where you want low and 
predictable latency - things like APIs, auth services or apps the user talks to. The other best practice is to combine the conference-
related multiple functions into generic funs as much as you can. That way you should be able to reduce the number of cold starts 
between different endpoints and share stuff like imported libraries and in it code as well. But, with that solution moderation needs to 
be considered in terms of modularity and maintainability.  

 
Even when that is the case, however, function splitting can still be desirable for fault isolation and clean code reasons, so this 

technique should definitely not be abused without thinking about your use cases and traffic patterns. Besides, dynamic memory 
adjustment and proactive monitoring make it cheaper and good performance guarantee. Developers can receive live feedback on the 
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duration a function to execute, how much memory it used, its error rate and bottlenecks and other performance information with 
observability tools such as AWS X-Ray, Azure Application Insights and Google Cloud Operations Suite. Networked on this data, the 
capability of functions to be adjusted in terms of configurations, such as adjusting memory allocations on the fly as the computing 
needs of the functions change may then be exploited. Using increased memory does not only increase the available corpus, but 
decreases the execution time, which further makes it less expensive, even though there would be increased cost level per second. 
Finally, not all of the discussed optimization techniques can be utilized, however, they will assist developers in creating performant and 

easily manageable serverless applications that will be more cost-effective and less prone to errors when the workload grows or the 
complexity of the application imposed on the infrastructure expands. 
 

5. Conclusion 
Serverless computing has become one of the game-changers of today when it comes to the deployment of cloud-based 

applications, thus providing developers with an opportunity to create and execute applications in a manner that does not require 

infrastructure management. That is largely due to the inherent properties of it, namely, on-demand scalability, fine-grained billing, 
and lower operational overheads, which makes it especially appealing to dynamic, event-driven, and microservices-oriented 
workloads. This paper gave an in-depth analysis of serverless platforms by looking at deployment trends, key performance indicators, 
and cost analysis in AWS Lambda, Azure Functions, and Google Cloud Functions. The study has shown that serverless platforms are 
best suited to support bursty and unpredictable workloads due to serverless platform responding to traffic almost instantly, by scaling. 
The experimental deployment and test showed however that all these platforms were able to scale linearly to a certain point (in our 
case about 1000 requests per second) after which the performance began to diminish as a result of throttling or cold start delays. 
When compared according to their cold start latency performance and price, AWS Lambda was the most effective solution to use 
especially when dealing with latency-sensitive applications. Azure Functions provided enterprise level integration especially to those 
users who used the Microsoft ecosystem, but it was more prone to higher cold start times. Google Cloud Functions is a little pricier, but 
offers a fairly pleasant deployment model, good integration with Google services, and as such can be reasonable choice for smaller 

teams and in cases of rapid prototyping. 
 
Nevertheless, the paper also outlined a number of issues that are associated with serverless computing. It is interesting to note 

that cold start latency can be an issue to applications that have a low-latency requirement and predictable costs within frequent high 
execution time or widespread invocation rates can hardly be predicted. It is possible to overcome these drawbacks with the help of the 
techniques of provided concurrency and bundle functions along with the dynamic resource tuning that was elaborated in detail and the 
practical suggestions were given.Going into the future, hybrid cloud combinations of serverless computing and container orchestration 
frameworks such as Kubernetes are an optimistic research domain to focus on in the future. These architectures would be able to take 
advantage of the best of both worlds: the ease and flexibility of serverless to cover front-end or even event-driven parts; and the 
controlled nature and predictability of containers on computing-heavy and long-lasting jobs. Advancement of these technologies 
combined with hybridization will ensure organizations reach a perfect mix of performance, affordability, and scalability in developing 

cloud-native applications. 
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