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1. Introduction 
1.1. Importance of Code Reviews in Software Development 

Code reviews form an essential ingredient of software engineering in modern days, where they are critical to maintaining quality, [1-4] 

maintainability, as well as cooperation amongst development teams. The introduction part explains the complexity and  significance of 

code reviews with the dimensions: 

 

1.1.1. Support Code Quality and Bug Detection 

  Early detection of bugs and defects is a primary objective of code reviews. You can find logic issues, performance bottlenecks, 

and security flaws in the code before adding it to the main branch by having a second or more pairs of eyes look at it. This stops defects 

from happening, which makes the software much better overall. 

Abstract:  

Code review is an essential process in contemporary software development that guarantees code 

quality, safety, maintainability and teamwork. However, manual code reviews take a lot of time, 

are likely to fail because of mistakes, and depend on the reviewer's knowledge. As Artificial 
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measuring review accuracy, time savings, false positives, and developer satisfaction. Results 
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comparable to human reviewers. Challenges include addressing complex logic, ensuring useful 
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1.1.2. Ensuring Uniformity and Compliance with Standards 

Code reviews are a way for the group to get everyone to follow coding standards and rules. Abuse of naming, documentation 

patterns, and formatting guidelines can be overlooked by reviewers and cause clutter in the codebase, which, in turn, makes it less 

readable and inconsistent. This kind of uniformity makes it easier for people to work together and makes it easier for new members to 

join a group. 

 

 
Figure 1. Importance of Code Reviews in Software Development 

 

1.1.3. Teamwork and Sharing of Knowledge  

The code review meetings enhances the teamwork and knowledge sharing among programmers. By examining peers' code, 

they discover new libraries, methods, and architecture patterns. The constructive review comments guide minimum experienced 

programmers in using best practices, accelerating their learning. 

 

1.1.4. Enabling Supportability and Sustainability  

The simple code that is well-documented, and well-structured is easy to maintain. When a developer does a code review, they 

are more likely to create code that can be deemed not only useful but also easy to keep up with and change. Over time, this makes the 

codebase stronger and more flexible, with less technical debt. Future enhancements or debugging will also be easier to handle. 

 

1.1.5. Accommodating the Agile and DevOps Processes 

In DevOps and agile systems, it's normal to make changes quickly and deploy them often. Code assessments are an easy way to 

check quality, and they let teams keep up their speed without giving up code integrity. Reviews help automate quality control and 

make sure that every change to the code moves the project closer to its goal and meets the team's expectations. This is possible because 

of version control and CI/CD. 

 

1.2. Difficulties of manual code reviews 

The main way to make sure software is of good quality is through manual code review, but there are some problems with it that could 

limit its effectiveness, especially as codebases grow and development speeds up. Some of the biggest problems with the old-fashioned 

manually reviewed systems are as follows: 

 

1.2.1. Time-Consuming 

When making big or complicated changes to code repositories, it can take a long time to review the code by hand. Reviewers 

also have to look over every line of code, access the transaction, and make sure that it was written according to coding standards. This 

can make the development process take longer. This is known to slow down releases, cause bottlenecks, and make the rest of the team 

work less well in fast-paced settings. 
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Figure 2. Difficulties of manual code reviews 

 

1.2.2. Tendency of Bias or Inconsistency  

Human reviewers often add random things to their decisions, like their own preferences, their relationship with the writer, or 

their own ideas of what makes good practice. This might make the feedback inconsistent, since in one case, identical code will be 

accepted, and in another, it will be thrown away. This kind of contradiction is not only annoying for programmers, but it also makes 

people less sure of the review process. 

 

1.2.3. Security Vulnerabilities or Edge Cases May Be Missed  

When time is short, even the most thorough reviewers may not be able to find all the small edge cases, performance problems, 

or security holes.People are less likely than automated tools to find low-probability conditions or patterns that can show deeper flaws 

in a system. This makes it even more likely that serious bugs will get into production and go undetected. 

 

2. Literature Survey 
2.1. Static Code Analysis Tools 

Static analysis of code tools are the basis for source code identification and and software quality control because they don't need 

to run the source code. Tools such as SonarQube, FindBugs, and PMD operate on a rule-based principle that identifies patterns of poor 

practices, coding standards violations, and security risks. [5-9] An example would be SonarQube, which scans the codebases in depth 

and gives very thorough feedback on code smells, duplications, and the complexity-related metrics. FindBugs specializes in Java 

bytecode to determine bug patterns, and PMD (Project-specific Modeling Document) works with abstract syntax trees (ASTs) to report 

possible problems in variables not used or bad naming. Although they are efficient in capturing syntactic and stylistic problems, the 

tools cannot provide the contextual knowledge to analyse the semantics or intent of the code. They are inferior at noting logical bugs or 

lack of edge cases or security-related issues, understanding of control flow, data flow, or business logic. In that regard, although rule-

based static analyzers are highly functional when it comes to checking the coding standards and detecting superficial problems, they 

cannot penetrate further, and therefore, they are not very effective when working with complicated or rapidly modernizing code. 

 

2.2. Machine Learning for Code Quality 

Machine learning (ML) has become an effective method to complement the static analysis as software engineering has 

advanced, and access to large quantities of data has become more common. Machine learning tools like DeepCode identify bugs by 

analyzing extensive datasets, including previous bugs, code repositories, and developer insights. They detect code issues not merely 

through pre-defined rules but by observing patterns and connections within the data. These tools offer contextual insights regarding 

the likelihood of code path failures and evolve over time with new information, enhancing their scalability and adaptability. For 

instance, they can recognize that certain library usage patterns may result in memory leaks or security vulnerabilities, despite not 

violating any specific syntax. Nevertheless, ML-based tools are highly vulnerable to the quality and diversity of the training data. False 

positives can be discovered when biases in the dataset or poor coverage, as well as the absence of detections. Nevertheless, ML is an 

important breakthrough in the field of code quality analysis as it allows performing it in a smarter and context-sensitive way. 

 

2.3. Transformer Models in Code Understanding 

Next, the development of transformer-based models, particularly those such as CodeBERT, Codex, and GraphCodeBERT, has 

revolutionised the field of code comprehension. They are pre-trained on enormous datasets of source code and natural language 

documentation, and are able to induce shared representations of code tokens, syntax trees, documentation, and more. Microsoft has 

trained CodeBERT to apply the BERT model to bimodal input (code and natural language) and other tasks, such as code search, c lone 

detection and summarization. Examples of tools and applications of Codex include GitHub Copilot, which predicts contextually aware 

code completions and suggestions, based on a fine-tuning of OpenAI GPT models on publicly available code found on GitHub. 

GraphCodeBERT, instead, integrates Abstract Syntax Trees (AST) and control flow graphs structural data, allowing GraphCodeBERT to 

reason over the syntactic and semantic relationships in code. These transformer models extend token-level analysis to interpret intent, 

control structures, and data dependencies in source code. Such superior comprehension enables them to create explanations similar to 
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those of humans, detect minute bugs, and even refactor them, which places them as being useless in modern AI-aided software 

development. 

 

2.4. Commercial Tools 

There are now a large number of commercial tools available to incorporate AI within the software development cycle, and all of 

them rely on different techniques, offer different types of feedback, and offer varying Amazon CodeGuru is an AWS machine learning-

based development tool designed to offer feedback on performance bottlenecks, security vulnerabilities, and best practices based on 

experience with internal Amazon code and review practices. It is able to fit well into IDEs and GitHub and provides inline suggestions 

when dealing with pull requests. DeepCode (acquired by Snyk in 2019) is the ability to make use of semantic code analysis and to 

perform context-aware review recommendations by working out exactly what the code means and not just how it is structured. It 

enables connection to other platforms, such as Git or Bitbucket, making it applicable in team-based development processes.  

 

Codacy provides a rule-based and pattern-matching engine for executing static analysis across. It focuses on the sustainability of 

code quality, providing static feedback on code stored in GitHub or GitLab repositories. Using Large Language Models (LLMs), GitHub 

Copilot, powered by Codex, provides developers with excellent code completions to write boilerplate and repetitive code faster. It is 

closely integrated with VSCode and other Git-based settings. Intended to fit various points in the development pipeline, examining 

different combinations of AI and developer friendliness, each of the tools represented below provides a unique set of features. 

 

2.5. Human-AI Collaboration in Reviews 

Even though AI tools are now more advanced than ever before, recent studies point out that automation is not a key quality that 

is beneficial to the code reviewing process, and it is necessary to focus on the human-AI collaboration. AI can be applied more 

effectively where it supplements human activity and helps detect low-level problems, suggest solutions, or warn about potential 

problem areas without issuing a final verdict. Such a collaborative structure aligns well with the contemporary DevOps and 

Continuous Integration/Continuous Deployment (CI/CD) pipeline, which requires rapid feedback and incremental advancements. 

Developers receive AI-fueled suggestions on the most prevalent problems or complicated bugs they may miss with the help of available 

data gathering, yet retain the capability to make essential architectural choices using their background expertise and situational 

awareness.  

 

Another benefit of AI explainability in research is that it highlights the importance of why AI commentaries are effective: 

developers tend to trust and listen to AI comments when a reason or point of reference accompanies them.Additionally, the 

collaborative tools create a learning ecosystem that enables the use of AI-driven reviews to support junior developers and incorporate 

best practices or code smells into the code in real-time. It aims to complement human supervision rather than substitute it, increasing 

productivity, consistency, and reducing the time required to give feedback. The symbiotic method guarantees a better code quality 

without losing the critical thinking and expert knowledge that serious developers possess. 

 

3. Methodology 
3.1. System Architecture 

Our idea is to create a hybrid code review system that combines the accuracy of static analysis with the contextual intelligence of 

transformer-based models. [10-15] The system will increase the quality of code and offer both rule-based and AI-based feedback. It has 

three main parts: The Static Analyser, the LLM Reviewer, and the Feedback Aggregator. 

 
Figure 3. System Architecture 
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3.1.1. Static Analyser 

This part is like the system's frontier guard. It scans the source code to find common problems, such as syntax errors, logical 

inconsistencies, operational walls, and code smells. Like other tools, such as PMD and Sonar Qube, it uses rule-based analysis, but it 

works based on set patterns and heuristics. The static analyzer is great at finding coding standard violations, unused variables, and 

loops that don't work. It doesn't take context into account, so it's a good first step in finding low-hanging fruit before doing more 

semantic analysis. 

 

3.1.2. LLM Reviewer 

The second system layer involves the fine-tuned Code BERT model to perform semantic code analysing and offer contextual 

feedback. As opposed to rule-based tools, the LLM Reviewer can interpret the structure and names of the code, as well as the meaning 

of intent, and provide feedback on possible logical faults, ambiguous implementations of functions, or document inconsistencies. It can 

be trained on massive amounts of annotated code. It can thus be as useful as a human being when it comes to suggesting ways to 

refactor or otherwise streamline and clean up the code, serving as an invaluable aid during the review process. 

 

3.1.3. Feedback Aggregator 

The last part of the architecture is the Feedback Aggregator. It combines information from the LLM Reviewer and the static 

analysis tool. It sorts and organizes suggestions into things that can be fixed, which makes it faster for people to look at code changes 

and approve them. This aggregator takes all the similar or conflicting suggestions and puts them in a format that is easy to read. It 

helps the software tools and the human developers trust each other and work together. 

 

3.2. Flowchart of Proposed System 

The system that is suggested is a chain, but it's a chain with more than one layer. The code has gone through progressively 

smarter parts by the time it reaches people. This design has just the correct quantity of coverage and context for reviewing code. 

 

 
Figure 4. Flowchart of Proposed System 

 

3.2.1. Source Code 

 The source code is often sent as a pull appeal or version-control commit. It is raw in the form of a program written using a 

programming language such as Java, Python or JavaScript, and it is an input into the automated analysis. It might have new features, 

bug fixes, or refactoring changes that need to be checked before they can be added to the main code base. 

 

3.2.2. Static Analyzer  

The Static Analyzer looks at the code as soon as it is posted. This part checks the code against a list of rules that have already 

been set up to make sure there are no syntax errors, performance issues, or common bugs and style problems. It works well for 

finding problems like missing semicolons, loops that do not work, or wrong citations. The result of static analysis is quick and certain, 

which makes it a good starting point for further inspection. 
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3.2.3. LLM Reviewer  

After that, it goes to the LLM Reviewer, who uses a more advanced version of CodeBERT to do a more thorough semantic 

parsing. This AI-led part knows how the code is structured, why it was written, and what it is supposed to do. This lets it find small 

problems, like APIs that are used incorrectly, edge cases that it doesn't have, or logic that is not defined. It also provides 

recommendations on improving code readability, naming conventions, and documentation. 

 

3.2.4. Feedback Aggregator  

The results of the Static Analyzer and the LLM Reviewer are channeled to the Feedback Aggregator. This module takes feedback 

and puts it all together, gets rid of duplicates, sorts problems by how bad they are, and shows them in a clear and easy-to-understand 

way. It makes it hard to agree with the suggestions and gives developers a chance to see all the results in one comprehensive 

assessment, which makes it easier to decide which fixes are most important. 

 

3.2.5. Human Approval  

Lastly, a human developer or reviewer checks the gathered feedback. This will provide oversight and judgment in context, 

which gives room to multiple subjective decisions in certain areas that ELAs can currently not make reliably, such as design trade-offs 

or considerations of business logistics. The human review process is where mediating automation and expert review is important 

because the quality of the code is rather high prior to incorporation. 

 

3.3. Fine-Tuning 

We attempted to fine-tune the pre-trained CodeBERT model using the CodeReviewNet dataset to assist the LLM Reviewer in our 

system in providing meaningful and context-sensitive responses. CodeReviewNet is a curated dataset that consists of more than 

200,000 pairs of real-world code and comments scraped from open-source repositories on forums such as GitHub. Theoretically, the 

pairs are formed by a code fragment and a review comment referring to it and describing bugs, improvement suggestions, or 

justification of some of the code changes. The dataset is very well annotated, thereby enabling the model to learn both the syntactic 

and semantic components of the code, as well as the human reasoning behind the general feedback in the reviews. Our method 

employed supervised fine-tuning and is based on the premise that the task can be viewed as a sequence-to-sequence prediction 

problem, where the model is trained to associate specific code with corresponding review-style comments. The foundational codeBERT 

model, pre-trained on a large collection of code and natural language, was extended in this way with domain-specific knowledge about 

how people code and communicate with each other through the process of reviewing code.  

 

In training, we ensured that the model was presented with diverse programming languages (e.g., Python, Java, JavaScript) and 

comment types, including performance hints, security alerts, and style updates. Finally, conventional NLP practices, tokenization, 

attention masking and positional encoding, were used together with task-specific approaches, teacher forcing, to provide a stable 

training. To prevent overfitting, training, validation, and test sets were prepared, and we tracked the performance measures of the 

BLEU score and ROUGE scores, as well as the qualitative evaluation of the generated feedback. The end result is a Code BERT model 

that works really well to write review comments that are very relevant to the context and sound, focus, and clarity like the comments 

of real people. What this provides our LLM Reviewer with is the ability to supplement static analysis by identifying covert problems 

and providing practical feedback in natural language when reviewing code. 

 

3.4. Measures of Evaluation 

In order to measure the efficiency of our suggested hybrid code review system, we make use of a blend of quantitative and 

qualitative analysis measures. [16-19] These indicators allow quantifying the technical correctness of the system as well as its practical 

implications on the work of developers. 
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Figure 5. Measures of Evaluation 

 

3.4.1. Precision and Recall 

Precision and recall are common metrics used to measure the quality of corrected automated feedback. Precision and recall have 

differences in their values, but they should be optimized simultaneously because precision measures the percentage of verbally 

generated comments that were correct or useful in the system. In contrast, recall determines the percentage of truly pertinent issues 

the system was able to recognise out of all the possible issues in the code. A high precision level will make sure that developers are not 

bombarded with false alarms, whereas a high recall value will make sure that the system is able to identify possible bugs carefully. 

 

3.4.2. Reduction of Review Time  

Enhancing Code Review Efficiency. The Number of hours that the developers have to spend reviewing code is one of the most 

important objectives of introducing automation into the code review process. We gauge the ability of the hybrid system to reduce 

review time by comparing the average time to accomplish reviews with and without the hybrid system. This indicator is used to 

measure how this system affects the productivity and efficiency of the developer in an iterative development process, where fast 

turnaround is critical. 

 

3.4.3. Score of Feedback Relevance  

We quantify the quality of the feedback by giving it a Feedback Relevance Score, which is usually rated by experts or peer 

reviewed. We look at each piece of feedback to see how clear, helpful, and appropriate it is in the situation. This score tells us how well 

the system can understand what the code is supposed to do and whether the suggestions it makes will help improve the code. 

 

3.4.4. Developer-Satisfaction Survey 

Finally, we ask developers who use the system what they think about it (subjectively). The questions focus on how useful the 

system seems, how trustworthy it is, how easy it is to integrate into current work processes, and how willing people are to use it in the 

long term. This kind of qualitative measure is a way to make sure that the system will meet people's needs and be used by real-life 

development teams. 

 

3.5. Tools Used 

We developed and implemented a hybrid code evaluation system that worked with a number of tools that each did a specific 

part of the pipeline. The selection of these tools was deliberate, potentially aiding in static analysis, machine learning, data extraction, 

and user interface design, thereby ensuring a comprehensive and functional review ecosystem. Code BERT was the built-in 

transformer model, and its effect was intelligent feedback that took into account the situation. Since Code BERT is a pre-trained model 

on a bimodal dataset of natural language and source code, a small amount of human-like review comments were generated as the 

model was fine-tuned on the Code ReviewNet dataset. Its rich semantic knowledge enabled the system to understand the structure, 

reasoning, and purpose of the code snippets and advise on how to improve the code or warn about problems that were not even 

related to syntax. To provide the baseline of the static code analysis, we turned to PyLint, which is a rather popular Python-based 

utility to identify programming errors, impose programming conventions, and find smells in the code. PyLint was the rule-based static 

checker of our architecture that gives fast, deterministic, and reliable Python program analysis.  
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Its suggestion assisted in the detection of general problems such as the existence of unused variables, the discrepancy of the 

indentations, or the inefficiency of the loops, and these results were then combined with the context-sensitive recommendations made 

by Code BERT. The GitHub API was very important because it gave us real-world data to use for training and testing. We could use the 

API to get pull requests, comments on them, and associated code changes in free software repositories. This would let us make an 

appropriate production scenario and test how well the system works with a normal version control workflow. Review of History The 

dataset also included comments from GitHub, which helped train and validate the LLM Reviewer even more. To develop an interactive 

and user-friendly interface, we adopted the stream lit Python lightweight framework, which is ideal for the rapid development of apps. 

Stream lit helped us make a clean interface that allowed developers to just post code, get an aggregation of the output from both 

analyzers, and get a feel of what a human would do. This assisted in justifying the rationality and applicability of our tool in real-life 

settings. 

 

4. Results and Discussion 
4.1. Experimental Setup 

To rigorously investigate the effectiveness and applicability of the proposed hybrid code review system, we have developed an 

experimental framework inspired by real-life scenarios of software development systems. We chose 20 Python open-source 

repositories of a mixed nature on GitHub. These repositories have been selected to resemble as many areas of application as possible: 

web development, data analysis, machine learning, automation tools, and API services. This variety ensured that our system was 

subjected to a majority of scaling, domain-specific concepts and coding methods that were highly diversified to evaluate the 

generalizability and robustness of our system. Based on these repositories, more than 500 Pull Requests (PRs) were taken out. These 

can be thought of as the main unit for code changes and code reviews and collaboration on GitHub. Most of the time, a pull request 

would have new or changed code, as well as comments and suggestions from human reviewers. This PR data gave us a clear and 

complete picture, including the source code and the developer's thoughts on how good, logical, and readable the code was. We used 

real pull requests instead of fake benchmarks to make sure that our tests were done in a way that was useful and close to how things 

work in the real world. 

  

For each pull request, we ran a simulation of two review conditions: a manual review case (when a developer does the code 

review without help) and an AI-service-assisted condition (when our hybrid reviewing system gives static and contextual comments 

before any code review is done by hand). A rules-based static analyzer (PyLint), a refined LLM (CodeBERT), and a feedback aggregator 

module that aggregates their outputs are all part of the hybrid system. Each scenario's outcomes were noted and examined using a 

number of performance metrics, including the amount of time required to review the text, the precision of the comments, and the 

users' level of satisfaction. This laboratory setup was a real, balanced, and empirical way to measure how this system affected not only 

its efficiency but also the overall quality of its code assessment process. 

 

4.2. Quantitative Results 

We compared the performance of the hybrid code review system we suggested to that of a typical manual review using four 

main metrics: average review time, precision, recall, and developer satisfaction. This was to see how well it worked and how well it 

worked. The result showed that the AI-aided system helped all areas do much better. 
 

Table 1. Quantitative Results 

Metric Improvement 

Avg. Time (min) 57.2% 

Precision 7.6% 

Recall 9.8% 

Satisfaction  23.5% 
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Figure 6. Graph representing Quantitative Results 

 

4.2.1.  Minutes of wait time (average) 26 % Reduced  

One notable outcome was the average code review rate, with reviews using the system taking an average of 6.2 minutes per 

pull, representing a 57.2 percent reduction in review time. This significant decline highlights how automation can streamline the 

review process by identifying issues and providing various recommendations, allowing peer reviewers to concentrate on more complex 

tasks rather than routine checks. 

 

4.2.2. Precision – 7.6% Increase  

Precision is a percentage measure of the feedback contributed by the system that was considered accurate and pertinent. In the 

case of manual reviews, the average precision was 0.79, and for the AI-assisted tool, it was 0.85, representing a 7.6 percentage point 

increase. This indicates that the recommendations provided by the system were found to be quite trustworthy, and the deployment of 

contextual comments created by the LLM did not result in a large number of false-positive offers. 

 

4.2.3. Recall – 9.8% Increase  

Recall evaluates the capabilities of a system to recognize all the related issues within the code. Some minor or repetitive 

problems in manual reviews were sometimes missed due to time limitations or reviewer fatigue. In comparison with manual reviews, 

our system scored 0.89 on recall, as opposed to 0.81, representing a 9.8 per cent improvement. This is a testimony to the fact that the 

system has more potential problems that have been unraveled. 

 

4.2.4. Satisfaction – 23.5% Increase  

Finally, a survey with rankings of 1-5 was used to find out how happy the developers were after the review. The average score 

went up by 23.5 percentile points (23.5%), from 3.4 for manual reviews to 4.2 for AI-assisted reviews. Developers liked that the review 

process was faster and less stressful because they could see problems they might not have noticed before. 

57.20% 

7.60% 
9.80% 

23.50% 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Avg. Time (min) Precision Recall Satisfaction

Improvement



*Sandeep Kumar Jangam1, Nagireddy Karri2, [2025]       AI Tools for Automating Code Reviews, Providing Contextual Feedback, and Improving 

the Efficiency of the Review Process 

 

 
37 

4.3. Discussion 

The evaluation results clearly show how well the hybridized code reviewing method works. This method integrates rule-based 

static analysis with contextual advice derived from a Large Language Model (LLM), demonstrating that utilizing multiple approaches 

enhances code quality review. CodeBERT was fine-tuned to provide human-like feedback that aligns with contemporary code review 

standards, making it easily understandable for developers. In contrast, tools like PyLint excel in identifying rule-based violations, such 

as variable usage and naming conventions, highlighting their distinct yet complementary roles in code quality assurance.  

 

Their main strength they can give quick, certain feedback that doesn't depend on learning or interpreting. However, they are 

not enough to warn about structural challenges that can only be fixed by knowing semantics, like using an API wrong, taking an 

illogical approach, or not handling errors properly. The hybrid system can use both of those methods because it can give both quick 

accuracy, which is typical of static analysis, and deeper thinking and language understanding, which is typical of LLMs. The feedback 

provided by the Aggregator is very important for making sure that the two outputs work together when there are problems with 

redundancy and contradictions. It also gives a summary of the review. 
 

This whole idea means that both the technical and the contextual reliability are taken care of. Our experimental findings, which 

include quicker, more accurate, and recall-focused review news, as well as a more enjoyable review procedure for developers, support 

the assertion that this hybrid model is more effective to the exclusive use of static or AI-based tools in delivering a more efficient, 

precise, and user-centered code review experience. 

 

5. Conclusion 
The development and evaluation of our hybrid code review procedure underscore the growing significance of AI in modern 

software development methodologies. This discovery indicates that both the efficiency and the quality of software reviews may be 

tremendously enhanced with the assistance of AI through the application of code reviews, especially in combination with code review 

driven by the rule-based, static analysis and by transformer-based language models. When tested on 20 different open-source Python 

repositories and over 500 pull requests, the system performed significantly better than traditional manual review in terms of review 

time, issue detection accuracy (precision and recall), and developer satisfaction in all cases. The hybrid structure, which combines the 

deterministic power of tools such as PyLint with the semantic insights of the fine-tuned model CodeBERT, has become a viable and 

scalable way to apply the hybrid architecture within real-life code reviews. The increased speed of the turnaround was only one of the 

reasons why the developers valued the AI-provided suggestions; the suggestions were clear and helpful, and the review process was 

overall more effective and pleasant. 

 

Nevertheless, despite these positive findings, several issues remain. One of the first problems is false positives, which is when 

the system marks valid code as suspicious. People tend to trust automated tools less unless they are filtered. Also, developers might 

become too reliant on AI, which means they won't use their own judgment and bugs that are subtle or specific to a certain area will get 

through. Another big problem is that AI-generated feedback isn't very clear.The suggestion can be helpful, but the people who made 

the model usually don't know why it works, and it can also be a problem in high-stakes or sensitive work. 

 

In our future work, we will focus on three main areas to fix these problems and even make the system better. The first is to 

keep making small changes to the model based on real user feedback from reviews so that it works well in different coding 

environments and with changing development practices. Second, we will focus on explainable AI, which would let the system not only 

make suggestions but also explain them in a way that is clear and easy to follow. This would help people get to know each other better 

and trust each other more. Last but not least, we'll add support for more programming languages and make it easier for DevOps 

pipelines to use them in their CI/CD pipeline. We hope that these changes will not only make the AI-powered code review faster and 

smarter, but also more responsible and less secretive. 
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