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1. Introduction
1.1. Importance of Code Reviews in Software Development
Code reviews form an essential ingredient of software engineering in modern days, where they are critical to maintaining quality, [1-4]
maintainability, as well as cooperation amongst development teams. The introduction part explains the complexity and significance of
code reviews with the dimensions:

1.1.1. Support Code Quality and Bug Detection

Early detection of bugs and defects is a primary objective of code reviews. You can find logic issues, performance bottlenecks,
and security flaws in the code before adding it to the main branch by having a second or more pairs of eyes look at it. This stops defects
from happening, which makes the software much better overall.
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1.1.2. Ensuring Uniformity and Compliance with Standards

Code reviews are a way for the group to get everyone to follow coding standards and rules. Abuse of naming, documentation
patterns, and formatting guidelines can be overlooked by reviewers and cause clutter in the codebase, which, in turn, makes it less
readable and inconsistent. This kind of uniformity makes it easier for people to work together and makes it easier for new members to
join a group.
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Figure 1. Importance of Code Reviews in Software Development

1.1.3. Teamwork and Sharing of Knowledge

The code review meetings enhances the teamwork and knowledge sharing among programmers. By examining peers' code,
they discover new libraries, methods, and architecture patterns. The constructive review comments guide minimum experienced
programmers in using best practices, accelerating their learning.

1.1.4. Enabling Supportability and Sustainability

The simple code that is well-documented, and well-structured is easy to maintain. When a developer does a code review, they
are more likely to create code that can be deemed not only useful but also easy to keep up with and change. Over time, this makes the
codebase stronger and more flexible, with less technical debt. Future enhancements or debugging will also be easier to handle.

1.1.5. Accommodating the Agile and DevOps Processes

In DevOps and agile systems, it's normal to make changes quickly and deploy them often. Code assessments are an easy way to
check quality, and they let teams keep up their speed without giving up code integrity. Reviews help automate quality control and
make sure that every change to the code moves the project closer to its goal and meets the team's expectations. This is possible because
of version control and CI/CD.

1.2. Difficulties of manual code reviews
The main way to make sure software is of good quality is through manual code review, but there are some problems with it that could
limit its effectiveness, especially as codebases grow and development speeds up. Some of the biggest problems with the old-fashioned
manually reviewed systems are as follows:

1.2.1. Time-Consuming

When making big or complicated changes to code repositories, it can take a long time to review the code by hand. Reviewers
also have to look over every line of code, access the transaction, and make sure that it was written according to coding standards. This
can make the development process take longer. This is known to slow down releases, cause bottlenecks, and make the rest of the team
work less well in fast-paced settings.
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Figure 2. Difficulties of manual code reviews

1.2.2. Tendency of Bias or Inconsistency

Human reviewers often add random things to their decisions, like their own preferences, their relationship with the writer, or
their own ideas of what makes good practice. This might make the feedback inconsistent, since in one case, identical code will be
accepted, and in another, it will be thrown away. This kind of contradiction is not only annoying for programmers, but it also makes
people less sure of the review process.

1.2.3. Security Vulnerabilities or Edge Cases May Be Missed

When time is short, even the most thorough reviewers may not be able to find all the small edge cases, performance problems,
or security holes.People are less likely than automated tools to find low-probability conditions or patterns that can show deeper flaws
in a system. This makes it even more likely that serious bugs will get into production and go undetected.

2. Literature Survey

2.1. Static Code Analysis Tools

Static analysis of code tools are the basis for source code identification and and software quality control because they don't need
to run the source code. Tools such as SonarQube, FindBugs, and PMD operate on a rule-based principle that identifies patterns of poor
practices, coding standards violations, and security risks. [5-9] An example would be SonarQube, which scans the codebases in depth
and gives very thorough feedback on code smells, duplications, and the complexity-related metrics. FindBugs specializes in Java
bytecode to determine bug patterns, and PMD (Project-specific Modeling Document) works with abstract syntax trees (ASTs) to report
possible problems in variables not used or bad naming. Although they are efficient in capturing syntactic and stylistic problems, the
tools cannot provide the contextual knowledge to analyse the semantics or intent of the code. They are inferior at noting logical bugs or
lack of edge cases or security-related issues, understanding of control flow, data flow, or business logic. In that regard, although rule-
based static analyzers are highly functional when it comes to checking the coding standards and detecting superficial problems, they
cannot penetrate further, and therefore, they are not very effective when working with complicated or rapidly modernizing code.

2.2. Machine Learning for Code Quality

Machine learning (ML) has become an effective method to complement the static analysis as software engineering has
advanced, and access to large quantities of data has become more common. Machine learning tools like DeepCode identify bugs by
analyzing extensive datasets, including previous bugs, code repositories, and developer insights. They detect code issues not merely
through pre-defined rules but by observing patterns and connections within the data. These tools offer contextual insights regarding
the likelihood of code path failures and evolve over time with new information, enhancing their scalability and adaptability. For
instance, they can recognize that certain library usage patterns may result in memory leaks or security vulnerabilities, despite not
violating any specific syntax. Nevertheless, ML-based tools are highly vulnerable to the quality and diversity of the training data. False
positives can be discovered when biases in the dataset or poor coverage, as well as the absence of detections. Nevertheless, ML is an
important breakthrough in the field of code quality analysis as it allows performing it in a smarter and context-sensitive way.

2.3. Transformer Models in Code Understanding

Next, the development of transformer-based models, particularly those such as CodeBERT, Codex, and GraphCodeBERT, has
revolutionised the field of code comprehension. They are pre-trained on enormous datasets of source code and natural language
documentation, and are able to induce shared representations of code tokens, syntax trees, documentation, and more. Microsoft has
trained CodeBERT to apply the BERT model to bimodal input (code and natural language) and other tasks, such as code search, clone
detection and summarization. Examples of tools and applications of Codex include GitHub Copilot, which predicts contextually aware
code completions and suggestions, based on a fine-tuning of OpenAl GPT models on publicly available code found on GitHub.
GraphCodeBERT, instead, integrates Abstract Syntax Trees (AST) and control flow graphs structural data, allowing GraphCodeBERT to
reason over the syntactic and semantic relationships in code. These transformer models extend token-level analysis to interpret intent,
control structures, and data dependencies in source code. Such superior comprehension enables them to create explanations similar to
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those of humans, detect minute bugs, and even refactor them, which places them as being useless in modern Al-aided software
development.

2.4. Commercial Tools

There are now a large number of commercial tools available to incorporate Al within the software development cycle, and all of
them rely on different techniques, offer different types of feedback, and offer varying Amazon CodeGuru is an AWS machine learning-
based development tool designed to offer feedback on performance bottlenecks, security vulnerabilities, and best practices based on
experience with internal Amazon code and review practices. It is able to fit well into IDEs and GitHub and provides inline suggestions
when dealing with pull requests. DeepCode (acquired by Snyk in 2019) is the ability to make use of semantic code analysis and to
perform context-aware review recommendations by working out exactly what the code means and not just how it is structured. It
enables connection to other platforms, such as Git or Bitbucket, making it applicable in team-based development processes.

Codacy provides a rule-based and pattern-matching engine for executing static analysis across. It focuses on the sustainability of
code quality, providing static feedback on code stored in GitHub or GitLab repositories. Using Large Language Models (LLMs), GitHub
Copilot, powered by Codex, provides developers with excellent code completions to write boilerplate and repetitive code faster. It is
closely integrated with VSCode and other Git-based settings. Intended to fit various points in the development pipeline, examining
different combinations of Al and developer friendliness, each of the tools represented below provides a unique set of features.

2.5. Human-AI Collaboration in Reviews

Even though Al tools are now more advanced than ever before, recent studies point out that automation is not a key quality that
is beneficial to the code reviewing process, and it is necessary to focus on the human-Al collaboration. Al can be applied more
effectively where it supplements human activity and helps detect low-level problems, suggest solutions, or warn about potential
problem areas without issuing a final verdict. Such a collaborative structure aligns well with the contemporary DevOps and
Continuous Integration/Continuous Deployment (CI/CD) pipeline, which requires rapid feedback and incremental advancements.
Developers receive Al-fueled suggestions on the most prevalent problems or complicated bugs they may miss with the help of available
data gathering, yet retain the capability to make essential architectural choices using their background expertise and situational
awareness.

Another benefit of Al explainability in research is that it highlights the importance of why Al commentaries are effective:
developers tend to trust and listen to Al comments when a reason or point of reference accompanies them.Additionally, the
collaborative tools create a learning ecosystem that enables the use of Al-driven reviews to support junior developers and incorporate
best practices or code smells into the code in real-time. It aims to complement human supervision rather than substitute it, increasing
productivity, consistency, and reducing the time required to give feedback. The symbiotic method guarantees a better code quality
without losing the critical thinking and expert knowledge that serious developers possess.

3. Methodology
3.1. System Architecture
Our idea is to create a hybrid code review system that combines the accuracy of static analysis with the contextual intelligence of
transformer-based models. [10-15] The system will increase the quality of code and offer both rule-based and Al-based feedback. It has

three main parts: The Static Analyser, the LLM Reviewer, and the Feedback Aggregator.
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Figure 3. System Architecture
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3.1.1. Static Analyser

This part is like the system's frontier guard. It scans the source code to find common problems, such as syntax errors, logical
inconsistencies, operational walls, and code smells. Like other tools, such as PMD and Sonar Qube, it uses rule-based analysis, but it
works based on set patterns and heuristics. The static analyzer is great at finding coding standard violations, unused variables, and
loops that don't work. It doesn't take context into account, so it's a good first step in finding low-hanging fruit before doing more
semantic analysis.

3.1.2. LLM Reviewer

The second system layer involves the fine-tuned Code BERT model to perform semantic code analysing and offer contextual
feedback. As opposed to rule-based tools, the LLM Reviewer can interpret the structure and names of the code, as well as the meaning
of intent, and provide feedback on possible logical faults, ambiguous implementations of functions, or document inconsistencies. It can
be trained on massive amounts of annotated code. It can thus be as useful as a human being when it comes to suggesting ways to
refactor or otherwise streamline and clean up the code, serving as an invaluable aid during the review process.

3.1.3. Feedback Aggregator

The last part of the architecture is the Feedback Aggregator. It combines information from the LLM Reviewer and the static
analysis tool. It sorts and organizes suggestions into things that can be fixed, which makes it faster for people to look at code changes
and approve them. This aggregator takes all the similar or conflicting suggestions and puts them in a format that is easy to read. It
helps the software tools and the human developers trust each other and work together.

3.2. Flowchart of Proposed System
The system that is suggested is a chain, but it's a chain with more than one layer. The code has gone through progressively
smarter parts by the time it reaches people. This design has just the correct quantity of coverage and context for reviewing code.

Source Code

Static Analyzer

Flowchart of
Proposed
System

LLM Reviewer

Feedback Aggregator

Human Approval

Figure 4. Flowchart of Proposed System

3.2.1. Source Code

The source code is often sent as a pull appeal or version-control commit. It is raw in the form of a program written using a
programming language such as Java, Python or JavaScript, and it is an input into the automated analysis. It might have new features,
bug fixes, or refactoring changes that need to be checked before they can be added to the main code base.

3.2.2. Static Analyzer

The Static Analyzer looks at the code as soon as it is posted. This part checks the code against a list of rules that have already
been set up to make sure there are no syntax errors, performance issues, or common bugs and style problems. It works well for
finding problems like missing semicolons, loops that do not work, or wrong citations. The result of static analysis is quick and certain,
which makes it a good starting point for further inspection.
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3.2.3. LLM Reviewer

After that, it goes to the LLM Reviewer, who uses a more advanced version of CodeBERT to do a more thorough semantic
parsing. This Al-led part knows how the code is structured, why it was written, and what it is supposed to do. This lets it find small
problems, like APIs that are used incorrectly, edge cases that it doesn't have, or logic that is not defined. It also provides
recommendations on improving code readability, naming conventions, and documentation.

3.2.4. Feedback Aggregator

The results of the Static Analyzer and the LLM Reviewer are channeled to the Feedback Aggregator. This module takes feedback
and puts it all together, gets rid of duplicates, sorts problems by how bad they are, and shows them in a clear and easy-to-understand
way. It makes it hard to agree with the suggestions and gives developers a chance to see all the results in one comprehensive
assessment, which makes it easier to decide which fixes are most important.

3.2.5. Human Approval

Lastly, a human developer or reviewer checks the gathered feedback. This will provide oversight and judgment in context,
which gives room to multiple subjective decisions in certain areas that ELAs can currently not make reliably, such as design trade-offs
or considerations of business logistics. The human review process is where mediating automation and expert review is important
because the quality of the code is rather high prior to incorporation.

3.3. Fine-Tuning

We attempted to fine-tune the pre-trained CodeBERT model using the CodeReviewNet dataset to assist the LLM Reviewer in our
system in providing meaningful and context-sensitive responses. CodeReviewNet is a curated dataset that consists of more than
200,000 pairs of real-world code and comments scraped from open-source repositories on forums such as GitHub. Theoretically, the
pairs are formed by a code fragment and a review comment referring to it and describing bugs, improvement suggestions, or
justification of some of the code changes. The dataset is very well annotated, thereby enabling the model to learn both the syntactic
and semantic components of the code, as well as the human reasoning behind the general feedback in the reviews. Our method
employed supervised fine-tuning and is based on the premise that the task can be viewed as a sequence-to-sequence prediction
problem, where the model is trained to associate specific code with corresponding review-style comments. The foundational codeBERT
model, pre-trained on a large collection of code and natural language, was extended in this way with domain-specific knowledge about
how people code and communicate with each other through the process of reviewing code.

In training, we ensured that the model was presented with diverse programming languages (e.g., Python, Java, JavaScript) and
comment types, including performance hints, security alerts, and style updates. Finally, conventional NLP practices, tokenization,
attention masking and positional encoding, were used together with task-specific approaches, teacher forcing, to provide a stable
training. To prevent overfitting, training, validation, and test sets were prepared, and we tracked the performance measures of the
BLEU score and ROUGE scores, as well as the qualitative evaluation of the generated feedback. The end result is a Code BERT model
that works really well to write review comments that are very relevant to the context and sound, focus, and clarity like the comments
of real people. What this provides our LLM Reviewer with is the ability to supplement static analysis by identifying covert problems
and providing practical feedback in natural language when reviewing code.

3.4. Measures of Evaluation

In order to measure the efficiency of our suggested hybrid code review system, we make use of a blend of quantitative and
qualitative analysis measures. [16-19] These indicators allow quantifying the technical correctness of the system as well as its practical
implications on the work of developers.
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Figure 5. Measures of Evaluation

3.4.1. Precision and Recall

Precision and recall are common metrics used to measure the quality of corrected automated feedback. Precision and recall have
differences in their values, but they should be optimized simultaneously because precision measures the percentage of verbally
generated comments that were correct or useful in the system. In contrast, recall determines the percentage of truly pertinent issues
the system was able to recognise out of all the possible issues in the code. A high precision level will make sure that developers are not
bombarded with false alarms, whereas a high recall value will make sure that the system is able to identify possible bugs carefully.

3.4.2. Reduction of Review Time

Enhancing Code Review Efficiency. The Number of hours that the developers have to spend reviewing code is one of the most
important objectives of introducing automation into the code review process. We gauge the ability of the hybrid system to reduce
review time by comparing the average time to accomplish reviews with and without the hybrid system. This indicator is used to
measure how this system affects the productivity and efficiency of the developer in an iterative development process, where fast
turnaround is critical.

3.4.3. Score of Feedback Relevance

We quantify the quality of the feedback by giving it a Feedback Relevance Score, which is usually rated by experts or peer
reviewed. We look at each piece of feedback to see how clear, helpful, and appropriate it is in the situation. This score tells us how well
the system can understand what the code is supposed to do and whether the suggestions it makes will help improve the code.

3.4.4. Developer-Satisfaction Survey

Finally, we ask developers who use the system what they think about it (subjectively). The questions focus on how useful the
system seems, how trustworthy it is, how easy it is to integrate into current work processes, and how willing people are to use it in the
long term. This kind of qualitative measure is a way to make sure that the system will meet people's needs and be used by real-life
development teams.

3.5. Tools Used

We developed and implemented a hybrid code evaluation system that worked with a number of tools that each did a specific
part of the pipeline. The selection of these tools was deliberate, potentially aiding in static analysis, machine learning, data extraction,
and user interface design, thereby ensuring a comprehensive and functional review ecosystem. Code BERT was the built-in
transformer model, and its effect was intelligent feedback that took into account the situation. Since Code BERT is a pre-trained model
on a bimodal dataset of natural language and source code, a small amount of human-like review comments were generated as the
model was fine-tuned on the Code ReviewNet dataset. Its rich semantic knowledge enabled the system to understand the structure,
reasoning, and purpose of the code snippets and advise on how to improve the code or warn about problems that were not even
related to syntax. To provide the baseline of the static code analysis, we turned to PyLint, which is a rather popular Python-based
utility to identify programming errors, impose programming conventions, and find smells in the code. PyLint was the rule-based static
checker of our architecture that gives fast, deterministic, and reliable Python program analysis.
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Its suggestion assisted in the detection of general problems such as the existence of unused variables, the discrepancy of the
indentations, or the inefficiency of the loops, and these results were then combined with the context-sensitive recommendations made
by Code BERT. The GitHub API was very important because it gave us real-world data to use for training and testing. We could use the
API to get pull requests, comments on them, and associated code changes in free software repositories. This would let us make an
appropriate production scenario and test how well the system works with a normal version control workflow. Review of History The
dataset also included comments from GitHub, which helped train and validate the LLM Reviewer even more. To develop an interactive
and user-friendly interface, we adopted the stream lit Python lightweight framework, which is ideal for the rapid development of apps.
Stream lit helped us make a clean interface that allowed developers to just post code, get an aggregation of the output from both
analyzers, and get a feel of what a human would do. This assisted in justifying the rationality and applicability of our tool in real-life
settings.

4. Results and Discussion

4.1. Experimental Setup

To rigorously investigate the effectiveness and applicability of the proposed hybrid code review system, we have developed an
experimental framework inspired by real-life scenarios of software development systems. We chose 20 Python open-source
repositories of a mixed nature on GitHub. These repositories have been selected to resemble as many areas of application as possible:
web development, data analysis, machine learning, automation tools, and API services. This variety ensured that our system was
subjected to a majority of scaling, domain-specific concepts and coding methods that were highly diversified to evaluate the
generalizability and robustness of our system. Based on these repositories, more than 500 Pull Requests (PRs) were taken out. These
can be thought of as the main unit for code changes and code reviews and collaboration on GitHub. Most of the time, a pull request
would have new or changed code, as well as comments and suggestions from human reviewers. This PR data gave us a clear and
complete picture, including the source code and the developer's thoughts on how good, logical, and readable the code was. We used
real pull requests instead of fake benchmarks to make sure that our tests were done in a way that was useful and close to how things
work in the real world.

For each pull request, we ran a simulation of two review conditions: a manual review case (when a developer does the code
review without help) and an Al-service-assisted condition (when our hybrid reviewing system gives static and contextual comments
before any code review is done by hand). A rules-based static analyzer (PyLint), a refined LLM (CodeBERT), and a feedback aggregator
module that aggregates their outputs are all part of the hybrid system. Each scenario's outcomes were noted and examined using a
number of performance metrics, including the amount of time required to review the text, the precision of the comments, and the
users' level of satisfaction. This laboratory setup was a real, balanced, and empirical way to measure how this system affected not only
its efficiency but also the overall quality of its code assessment process.

4.2. Quantitative Results

We compared the performance of the hybrid code review system we suggested to that of a typical manual review using four
main metrics: average review time, precision, recall, and developer satisfaction. This was to see how well it worked and how well it
worked. The result showed that the Al-aided system helped all areas do much better.

Table 1. Quantitative Results
Metric Improvement

Avg. Time (min) | 57.2%

Precision 7.6%
Recall 9.8%
Satisfaction 23.5%
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Figure 6. Graph representing Quantitative Results

4.2.1. Minutes of wait time (average) 26 % Reduced

One notable outcome was the average code review rate, with reviews using the system taking an average of 6.2 minutes per
pull, representing a 57.2 percent reduction in review time. This significant decline highlights how automation can streamline the
review process by identifying issues and providing various recommendations, allowing peer reviewers to concentrate on more complex
tasks rather than routine checks.

4.2.2. Precision - 7.6% Increase

Precision is a percentage measure of the feedback contributed by the system that was considered accurate and pertinent. In the
case of manual reviews, the average precision was 0.79, and for the Al-assisted tool, it was 0.85, representing a 7.6 percentage point
increase. This indicates that the recommendations provided by the system were found to be quite trustworthy, and the deployment of
contextual comments created by the LLM did not result in a large number of false-positive offers.

4.2.3. Recall - 9.8% Increase

Recall evaluates the capabilities of a system to recognize all the related issues within the code. Some minor or repetitive
problems in manual reviews were sometimes missed due to time limitations or reviewer fatigue. In comparison with manual reviews,
our system scored 0.89 on recall, as opposed to 0.81, representing a 9.8 per cent improvement. This is a testimony to the fact that the
system has more potential problems that have been unraveled.

4.2.4. Satisfaction - 23.5% Increase

Finally, a survey with rankings of 1-5 was used to find out how happy the developers were after the review. The average score
went up by 23.5 percentile points (23.5%), from 3.4 for manual reviews to 4.2 for Al-assisted reviews. Developers liked that the review
process was faster and less stressful because they could see problems they might not have noticed before.
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4.3. Discussion

The evaluation results clearly show how well the hybridized code reviewing method works. This method integrates rule-based
static analysis with contextual advice derived from a Large Language Model (LLM), demonstrating that utilizing multiple approaches
enhances code quality review. CodeBERT was fine-tuned to provide human-like feedback that aligns with contemporary code review
standards, making it easily understandable for developers. In contrast, tools like PyLint excel in identifying rule-based violations, such
as variable usage and naming conventions, highlighting their distinct yet complementary roles in code quality assurance.

Their main strength they can give quick, certain feedback that doesn't depend on learning or interpreting. However, they are
not enough to warn about structural challenges that can only be fixed by knowing semantics, like using an API wrong, taking an
illogical approach, or not handling errors properly. The hybrid system can use both of those methods because it can give both quick
accuracy, which is typical of static analysis, and deeper thinking and language understanding, which is typical of LLMs. The feedback
provided by the Aggregator is very important for making sure that the two outputs work together when there are problems with
redundancy and contradictions. It also gives a summary of the review.

This whole idea means that both the technical and the contextual reliability are taken care of. Our experimental findings, which
include quicker, more accurate, and recall-focused review news, as well as a more enjoyable review procedure for developers, support
the assertion that this hybrid model is more effective to the exclusive use of static or Al-based tools in delivering a more efficient,
precise, and user-centered code review experience.

5. Conclusion

The development and evaluation of our hybrid code review procedure underscore the growing significance of Al in modern
software development methodologies. This discovery indicates that both the efficiency and the quality of software reviews may be
tremendously enhanced with the assistance of Al through the application of code reviews, especially in combination with code review
driven by the rule-based, static analysis and by transformer-based language models. When tested on 20 different open-source Python
repositories and over 500 pull requests, the system performed significantly better than traditional manual review in terms of review
time, issue detection accuracy (precision and recall), and developer satisfaction in all cases. The hybrid structure, which combines the
deterministic power of tools such as PyLint with the semantic insights of the fine-tuned model CodeBERT, has become a viable and
scalable way to apply the hybrid architecture within real-life code reviews. The increased speed of the turnaround was only one of the
reasons why the developers valued the Al-provided suggestions; the suggestions were clear and helpful, and the review process was
overall more effective and pleasant.

Nevertheless, despite these positive findings, several issues remain. One of the first problems is false positives, which is when
the system marks valid code as suspicious. People tend to trust automated tools less unless they are filtered. Also, developers might
become too reliant on Al, which means they won't use their own judgment and bugs that are subtle or specific to a certain area will get
through. Another big problem is that Al-generated feedback isn't very clear.The suggestion can be helpful, but the people who made
the model usually don't know why it works, and it can also be a problem in high-stakes or sensitive work.

In our future work, we will focus on three main areas to fix these problems and even make the system better. The first is to
keep making small changes to the model based on real user feedback from reviews so that it works well in different coding
environments and with changing development practices. Second, we will focus on explainable Al, which would let the system not only
make suggestions but also explain them in a way that is clear and easy to follow. This would help people get to know each other better
and trust each other more. Last but not least, we'll add support for more programming languages and make it easier for DevOps
pipelines to use them in their CI/CD pipeline. We hope that these changes will not only make the Al-powered code review faster and
smarter, but also more responsible and less secretive.
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