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Abstract:  

The modern large-scale applications have distributed databases as their core, and it is challenging 

to keep the latency low and the load balanced during the highly variable workloads. The common 

way of using static range or hash partitioning and traditional cost-based optimizers is as a one-

time tuned system that is then allowed to run under changing access patterns resulting in skew of 

data and communication across partitions and inconsistent performance. In this paper, a single 

architecture of the High-Performance Distributed Database Partitioning is suggested whereby the 

Machine Learning-Fueled Workload Forecasting is integrated with AI-Aided Query Optimization. 

Workload forecasting module takes in streams of telemetry, query arrival rate, key access 

frequencies, utilization of resources, and uses the time-series and deep sequence models to 

forecast short term traffic patterns and the occurrence of hot keys. These forecasts drive an 

adaptive partitioning engine that selects split, merge, and migration actions to rebalance shards 

while explicitly constraining data-movement overhead. Simultaneously, a query optimizer based 

on learning applies learned cost models and cardinality estimators which know the current and 

predicted partition layout, and use this to compute topology-aware join order, replica choice and 

operator choice. The two elements constitute the closed feedback loop with the distributed storage 

layer, constantly improving the models as per the observed performance. Benchmark and cloud-

inspired workload experimental assessments show that it has made great leaps in terms of 

latency, throughput, and load balance compared to the state-of-the-art learned optimizers, and 

scaled down to convergence much more rapidly than static partitioning and converges with fewer 

repartitioning actions. The findings point to the promise of an intensive integration of forecasting 

and query optimization as a viable step to self-optimizing, workload-conscious distributed 

databases. 
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1. Introduction 
The current generation of cloud-native applications, big data analytics, and real-time transactional systems are built on the use 

of distributed databases to ensure strict performance, scale, and availability needs. [1-3] Database workloads are dynamic and 

unpredictable in terms of how they are accessed as the amount of data increases and the access behavior of users becomes more 

volatile. Conventional partitioning techniques like static range, hash or list partitioning are normally developed and optimized offline 

depending on past assumptions and not on the current, changing workload. Consequently, such schemes are often prone to load 

imbalance, hotspots, and high cross-partition communication and can thus result in poor throughput and high query latency, 

particularly with skewed or rapidly changing access distributions. 

 

The recent breakthroughs in machine learning (ML) and AI-based system optimization provide a strong chance to reconsider 

the way partitioning and query processing synchronization is organized. This can be redefined as a dynamic, data-driven decision 

making problem instead of partitioning being thought of continually as either a one-time physical design decision. Present in this 

paper a unified framework, which integrates both Machine Learning-Driven Workload Forecasting and AI-Assisted Query Optimization 

to be able to generate high-performance, adaptive partitioning in a distributed database. Our method makes use of time-series and 

sequence models to predict the main workload features and feeds these results into partition layout modifications and query plan 

choice. With a close relationship between workload prediction and query optimization, the system is able to enforce skew mitigation, 

remote communication reduction, and performance preservation underdynamic conditions, which brings the system closer to the 

vision of a self-optimizing distributed database. 

 

2. Related Work 
The study of distributed database partitioning and query processing has a long history of research work going over decades of 

research on physical database design, workload management and query optimization. [4-6] The systems of the past were more 

oriented towards the static partitioning plans and manual cost models, whereas the newer developments are starting to incorporate 

machine learning (ML) parts of the system to predict the workloads, optimize the physical layouts, and refine the choices of the 

optimizer. The state of surveys through 2024 is that there is a convergence trend whereby they do not treat partitioning, workload 

prediction and optimization as independent modules but rather, they are coupled in newer frameworks and hence physical design and 

query planning co-evolve as workloads change dynamically and scale with cloud scale workloads. Four broad streams of work are 

reviewed herein and the gap identified which has led to our suggested framework. 

 

2.1. Traditional Database Partitioning Strategies 

The classical distributed database systems embrace the use of partitioning (or sharding) in order to provide scalability, 

parallelism, and fault isolation. The fundamental building blocks are still range, hash, list and hybrid (composite) strategies. In range 

partitioning, tuples are allocated to partitions depending on ranges of an ordered key, and works especially well on temporal data and 

range queries, but is extremely susceptible to skew when access is concentrated in a small set of so-called hot ranges. Hash 

partitioning, by contrast, applies a hash function on the partition key to distribute tuples uniformly across nodes, balancing load for 

point lookups and simple joins, but often performing poorly for range scans and ordered processing. List partitioning explicitly lists 

key values / categories per partition providing fine control over domain specific layouts, but is expensive to maintain. 

 

These simple methods are extended to hybrid schemes and composite schemes. Considering an example, range-partitioning of 

time-series workloads may be done through time and hash-partitioning through time slice to provide locality to recent work and load 

balance among nodes, respectively. Other systems integrate list and range partitioning to isolate tenants, region or application 

modules. Even surveys as recent as 2024 demonstrate that the success of any scheme is paramount on the amount of work: when 

access patterns and partition boundaries are not in line with each other, data skew, cross-partition joins and costly remote lookups 

occur. The boundaries established in the design or deployment phase by static partitioning are fixed, they are simple to understand and 

predict, but they fail in a changing workload environment. Dynamic partitioning proposes online splitting, merging, and migration to 

deal with skew and hotspots at the expense of re-partitioning overhead and complexity of coordination and running queries will be 

disrupted. 

 

2.2. Machine Learning for Workload Prediction 

Machine learning has also been used more extensively to predict database and cloud workloads in advance to allow the systems 

to allocate resources and configure systems optimally. Commonly used classical time-series models are ARIMA, SARIMA, and 
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exponential smoothing. They provide parameter parameters that can be interpreted, and have low computation costs, thus they are 

suitable in production environments with very limited latency conditions. All these models however, generally assume either 

stationarity or simple seasonality and therefore fail with multi-modal nonstationary behaviour that is typical of multi-tenant cloud 

systems, where traffic patterns are affected by external events, feature launches or batch analytics jobs. 

 

To overcome these difficulties, the approaches based on deep learning use recurrent neural networks (RNNs), long short-term 

memory (LSTM) networks, gated recurrent units (GRUs), and sequence-to-sequence models to learn the intricate temporal 

correlations and multi-dimensional workload characteristics. These models have been applied to forecast CPU usage, request rates and 

resource requirements on VM, container or function level and have been shown to provide better predictions compared to classical 

baselines. Extensions incorporate clustering and representation learning to group similar workload traces before forecasting, or 

employ hybrid models that combine short-term and long-term components to capture both burstiness and diurnal cycles. 

Reinforcement learning and deep RL have also been considered in workload-related control problems, like autoscaling, VM 

consolidation and live migration, where the agent learns a policy to compromise between performance and cost / energy consumption. 

Although these techniques are flexible and strong, they generally demand huge volumes of interaction data, attentive reward design, 

and safeguards to prevent the phenomenon of oscillations, SLO breaches, and resource thrashing in production systems. 

 

2.3. AI-Assisted Query Optimization  

The classical query optimizers are based on analytic cost models and heuristics that are developed manually and rely on 

statistics like histograms, samples, and sketches to approximate selectivities and cardinalities. These models suppose independence 

between attributes and approximate distributions which frequently fail on the existence of correlations, skew or complicated 

predicates. Misestimation may propagate through the optimization, poor join orders, improper use of indexes and the choice of 

operators that impact badly on performance. This has stimulated a surge of studies of learned terms and entirely AI-aided optimizers. 

 

Learned cardinality estimators View cardinality prediction as density estimation or supervised learning. Some of the techniques 

are learned indexes, deep autoregressive models, and neural density estimators that learn the joint distributions across multiple 

attributes. These techniques have demonstrated significantly higher precision than traditional histograms to multi-attribute queries, 

both in optimizing plan quality on experimental plan and actual traces. In addition to estimation, learned optimizers formulate the 

plan selection problem as a learning problem, using supervised learning, contextual bandits, or reinforcement learning to select the 

join orders, operator implementation, or overall execution plan. The systems like learned advisors and AutoSteer-like systems are 

installed on top of existing DBMSs and propose or impose plans on the basis of previous performance. Although these methods have 

shown good results, they have drawbacks: they add overheads to training and maintenance, have to generalize to queries and data 

changes that are never seen, and can be unstable when the model errors are inappropriately guiding the optimizer. The problem of 

providing robustness, portability to both engines and hardware, and predictable worst-case performance is an open research problem. 

 

2.4. Limitations in Current State of the Art  

Although the dynamic partitioning, workload forecasting, and AI-assisted query optimization have been developed to a 

considerable degree, they tend to be developed separately. Most partitioning plans are based on comparatively fixed or very gradual 

workload and are optimized on the basis of offline examination or crudely determined suggestions instead of fine-grained, machine 

learning-based predictions of workload. Auto-sharding and dynamic re-partitioning schemes are typically responsive to observed skew 

or hotspots once performance has already deteriorated, and require significant data migration overhead and can occasionally make 

layout switches between bursty and multi-phase workloads. 

 

Similarly, classical and deep learning-based workload prediction models are often considered to concentrate on aggregate 

measures of CPU usage, IOPS or request rates, but do not explicitly model query level semantics, transaction patterns, or physical 

layout. Consequently, their predictions are not fully used when making such decisions as location of partitions, replicas or topology-

based query planning. Resource control reinforcement learning methods work on coarse granularity and in most cases does not 

directly interact with the internals of partitioning or optimizers. Learned cardinality estimators and planners can mostly enhance the 

quality of local decisions, but do not usually coordinate with physical partitioning or projected workload evolution. The absence of an 

end to end, unified framework implies that any chances to collectively optimize partitioning and query planning, using future workload 

projections, are mostly missed. These constraints inspire our efforts: a framework where workload prediction using ML is closely 

combined with query improvement using AI to generate adaptive high performance partitioning of distributed databases. 
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3. System Architecture & Methodology 
3.1. Overview of the Proposed Framework 

The proposed framework, illustrated in Figure 1, is a closed-loop architecture that is constantly observing the system, 

forecasting future behavior of workload and adjusting the partitioning as well as query plans to meet the requirement. [7-10] 

Telemetry elements measure the metrics and the traces on the distributed database cluster such as query arrival rates, key or range 

access frequencies and runtime cardinalities. These signals are converted to features and sent to the workload forecasting module 

which has time-series or sequence models (e.g., RNNs or Transformers) to forecast short-term and medium-term workload features 

including traffic intensity and hot keys. Meanwhile, the AI query optimizer takes in the statistics and cardinalities based on telemetry to 

further narrow down its learned cost model and policy of plan selection. 

 

With prediction information of the load and hot-region, the partitioning engine is a policy and decision service that calculates 

new partitioning plans or incremental steps, e.g., dividing overloaded shards, or merging cold partitions, or reassigning ranges to 

different nodes. The repartition controller receives such decisions which are then charged with responsibility of performing data 

movement and rebalancing operations safely and updating the routing metadata utilized by the cluster. The distributed database 

cluster, which consists of shards and replicas, processes the queries that come to it based on the plans generated by the AI query 

optimizer and directs them based on the latest partition layout. 

 

Closing the loop takes the form of monitoring and a feedback element that gathers performance measurements of the cluster in 

form of performance measures like latency, throughput and skew measures and feeds them back to the forecasting and optimization 

modules. Those metrics may raise any alert or trigger a retraining of the models in case of performance decline or the workload 

patterns vary considerably. The AI optimizer is connected to an admin/orchestration interface which only accepts runtime statistics 

and modifies high level policies, and enforces safety constraints so that automated partitioning and query tuning is in accordance with 

service level goals and operational determinations. 

 

 
Figure 1. Overall Architecture of the Ml-Driven Workload Forecasting and Ai-Assisted Query Optimization Framework for 

Adaptive Partitioning In Distributed Databases 
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3.2. Workload Forecasting Module 

The workload forecasting module is used to convert raw telemetry into signals to be used by downstream decisions. It is able to 

first to extract metrics and trace metrics time series of query arrival rates, per-key or per-range access frequencies, read-write ratios 

and resource use (CPU, I/O, memory) at the shard and node level. These attributes drive into a prediction model, whereby the system 

can select between classical time-series algorithms (e.g., ARIMA), recurrent (RNN/LSTM) or Transformer-based sequence models 

based on their horizon length, non-stationarity and resource constraints. Supervised learning is used to train models to predict using 

rolling windows of history data of workload, and the models are evaluated based on metrics like mean absolute percentage error and 

error distributions of predicted traffic and hot-key sets. Periodic re-training and online validation will in turn keep the forecaster up to 

date with drift ensuring it makes accurate, low-latency forecasts that can be ingested by the partitioning engine as well as AI-assisted 

optimizer. 

 

3.3. ML-Driven Partitioning Engine  

The ML-controlled partitioning engine transforms the workload forecasts into dynamic partitioning choices to the distributed 

database. [11-13] Given predicted per-key and per-range load, it determines when and how to split, merge, or migrate partitions, 

selecting actions that minimize future skew while constraining data movement overhead. The engine incorporates a load balancing 

strategy that optimizes placement across nodes, considering CPU, memory, and storage capacity, as well as replication topology and 

fault domains. Additionally, it is latency-aware: by accounting for network proximity, cross-partition join frequency, and read-path 

locality, the engine proposes reorganizations that reduce tail latency rather than merely equalizing raw throughput. The decisions are 

implemented through the repartition controller that implements the decisions step by step without the disruption and the engine will 

constantly improve its policies based on the results of their performances and feedbacks. 

 

3.4. AI-Assisted Query Optimization Layer  

The query optimization layer based on AI supports the stalwart optimizer with gained costs models and data-driven plan 

selection. The system does not need to look at handcrafted cost formulae and rudimentary histograms alone to generate its cost 

estimators; it teaches cost estimators that can map query and data characteristics (e.g. predicate structure, prediction access patterns, 

and existing partition layout) into cardinality and latency predictions. These acquired models can be used to choose a query plan, and 

they influence join ordering, selection of operators, as well as the selection of replicas or shards, in a manner that is closely coupled 

with the current partitioning state. The DB optimizer is integrated by using pluggable interfaces: the estimated models substitute or 

augment the traditional selectivity estimators and cost functions, without affecting the space of the search and the rule engine. This 

design allows the AI layer to steer plans toward partition-aware, low-latency executions, yet fall back to safe traditional heuristics 

when model confidence is low or in cold-start scenarios. 

 

3.5. End-to-End Adaptive Execution Workflow  

As depicted in Figure 2, the end-to-end adaptive execution workflow initiates with the continuous gathering of the operational 

indicators by the running system. Such signals are metrics like query arrival rates, per-share latency and error rates, as well as higher-

level logic signals like deployment change or tenant throttling. A data preprocessing layer normalizes aggregates and aligns these 

heterogeneous signals in feature vectors that can be used in machine learning. This layer may resample time series, smooth noise, and 

derive composite indicators (for example, moving averages or burstiness scores), ensuring that the downstream forecasting model 

receives a stable and information-rich representation of system behavior. 

 

The workload predictor then consumes the processed feature vectors and is an ML forecasting engine of the framework. 

According to the previous trends and the prevailing situation, it generates load predictions, which describe the intensity of future 

traffic, hot partitions and anticipated contention levels. These predictions are inputted to the metadata router, which maintains the 

partition map and routing policies and the query optimizer, which is based on learning, and estimates the plan costs based on the 

forecasted workload. The metadata router incorporates the forecasts into routing choices like the movement of specific key ranges to 

do less loaded nodes or the alteration of replica choices whilst the optimizer produces partition-aware query plans, which reduce the 

cross-node communication and tail latency. 
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Figure 2. End-To-End Adaptive Execution Workflow Integrating Workload Prediction, Partition Routing, and Learning-Based 

Query Optimization in A Distributed Database 

 

The distributed storage nodes are optimized with updated routing metadata and apply this information to data and responds to 

queries by storing data and replicas physically. This system operates under these new settings releasing performance data back into an 

endless feedback loop on the nodes. This loop propagates the workload predictor and the learning-based optimizer, which allows 

training the model periodically and optimizing the hyperparameters. Through this, the whole workflow constitutes a closed loop of 

optimization: operational information propagates predictions, predictions influence routing and planning and measured performance 

provides feedback to optimize the models, providing an adaptively self-tuning distributed database. 

 

4. Implementation & Experimental Setup 
4.1. Distributed Database Environment 

The suggested framework is executed on a shared-nothing distributed database cluster with 12 commodity nodes, which are 

powered by multi-core processors, [14-16] between 64 and 128 GB of RAM, using SSD-based storage, connected with each other 

through a 10-40 Gbps Ethernet fabric. The prototype is implemented on a fault tolerant, scaled read, production grade, partitioned 

key-value store, which is extended with SQL support. A primary key is used to hash-partition the data and an optional range sub-

partitioning is available using our partitioning engine, and replication is managed by our metadata service which is a consensus based 

service exposing a partition map to the clients. Experimental workloads are derived from industry-standard benchmarks (YCSB-style 

key-value workloads and TPC-C-like transactional mixes) augmented with synthetic traffic generators that emulate diurnal cycles, 

bursty spikes, and shifting hot-key distributions, allowing us to stress-test the system under realistic, nonstationary conditions. 
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4.2. ML Model Implementation Details 

The workload forecasting module is trained on PyTorch and scikit-learn, and the default setting is based on a stacked LSTM 

network to do multiple steps ahead predictions of per-partition request rates and aggregate cluster load. Input characteristics are made 

out of processed telemetry channels, such as rolling statistics of request counts, ratio of hits in a cache, read-write separators, and tail 

lags, z-score-scaled. The offline training of the models is done on historic traces, and they are regularly optimized on-the-fly by mini-

batch updates to detect workload drift, through the Adam optimization and early stopping by validation mean absolute percentage 

error. The AI-assisted query optimizer incorporates a lightweight feed-forward neural network as a learned cost model, trained on a 

corpus of executed queries labeled with observed latency and resource usage; at runtime, this model is invoked inside the optimizer's 

cost interface, with confidence thresholds and fallback logic ensuring safe degradation to the native cost model when predictions are 

unreliable or out-of-distribution. 

 

4.3. Baseline Methods for Comparison 

To evaluate the benefits of our ML-driven framework, compare against several baseline configurations representative of current 

practice. The most common baselines are both the static hash partitioning and the static range partitioning, which is configured 

beforehand with offline workload samples and not altered during execution and a reactive auto-sharding scheme which partitions are 

segmented only when utilization crosses predetermined thresholds. Our query optimization techniques involve the native cost-based 

optimizer in the database using traditional histogram-based cardinality estimation as a base-line and utilizing another model that 

represents a combination of static partitioning and a partition-conscious heuristic optimizer, rule-based. Every baseline has identical 

hardware, dataset, and replication configuration as our method, multiple experiments are executed, which allows taking into 

consideration variability, and present average and tail measurements of throughput, latency, redistribution cost to provide a just and 

complete comparison. 

 

5. Results and Discussion 
The offered framework was tested using a combination of both synthetic and benchmark workloads based on e-commerce, 

analytical, and transactional traces, such as JOB and STACK-like query benchmarks. [17-20] In all experiments, combining ML-

informed workload prediction with AI-informed query optimization showed significant improvements in the latency, throughput, and 

resources exploitation as compared to the traditional static partitioning and traditional optimizers. This part will provide the empirical 

findings of each subsystem and will comment on the general scalability, adaptiveness and limitations. 

 

5.1. Workload Forecasting Accuracy 

Table 1 represents the accuracy of predictions of various forecasting models on e-commerce cloud workload trace. Models based 

on transformers had the lowest error rates, and their MAPE was 6.5%, then LSTM (7.4%) and GRU (7.0%). The classical approaches 

like ARIMA and Prophet had much larger error values as MAPE were more than 11% indicating their inabilities to capture sharp spikes 

and non-linear seasonal influences. The smaller MAE and RMSE of the deep models are a value that will result in a more trusted short-

term load forecast, which consequently enables the partitioning engine to proactively rebalance hot partitions instead of acting once 

SLA violations have been detected. Ideally, have found that only needed to reduce the MAPE by 4-5% points to eliminate many of our 

near-overload cases with flash sales and promotional sales. 

 

Table 1: Workload Forecasting Accuracy 

Model MAE RMSE MAPE (%) 

ARIMA 120.5 150.8 12.5 

Prophet 110.3 140.4 11.8 

LSTM 75.2 98.7 7.4 

GRU 72.8 95.3 7.0 

Transformer 68.5 90.1 6.5 

 



*
Parameswara Reddy Nangi & Chaithanya Kumar Reddy Nala Obannagari [2024]       

High-Performance Distributed Database Partitioning Using Machine Learning-Driven 

Workload Forecasting and Query Optimization 

 

 
18 

 
Figure 3. Workload Forecasting Accuracy Comparison 

 

5.2. Partitioning Performance 

Table 2 represents the effect of ML-based forecasts on partitioning quality. With a heavy work load, varying hot keys, the base 

configuration was 2.5 on max/min load ratio, meaning that the busiest node carried out more than twice the load of the least loaded 

node. In comparison to this, the proposed dynamic partitioning scheme lowered this ratio to 1.2 which is close to an ideal balance. At 

the same time, repartition frequency dropped from 15 to 6 operations per hour, as better predictions allowed the system to schedule 

fewer but more effective migrations. This reduction in churn is especially important at scale, because it lowers data movement 

overhead and minimizes the window during which partitions are partially in flight, improving both throughput and tail latency. 

 

Table 2: Partitioning Performance 

Metric Baseline Proposed 

Load Balance (Max/Min Ratio) 2.5 1.2 

Repartition Frequency (per hr) 15 6 

 

5.3. Query Optimization Improvements 

Table 3 compares query latency (normalized GMRL metric) of various optimizers using the JOB benchmark as well as the 

STACK benchmark. The native PostgreSQL-based optimizer (PG) is taken as a baseline and has normalized latency 1.0. Neo and Balsa 

are learned optimizers that increase performance through better join orders and operators, which reduces JOB latency to 0.69. The 

maximized output of our BASE optimizer is 0.64 in JOB and 0.61 in STACK, which is a 36 percent and 39 percent reduction in latency 

compared to PG, and by 24% and 7% on JOB over Neo and Balsa, respectively. These benefits are mainly due to a better cardinality 

estimation of skewed joins and the possibility to utilize partition-aware access paths hinted at by the partitioning engine. It is worth 

noting that BASE reaches such policies in the 10 hours of training, whereas learners who only receive latency or cost signals take 

longer before stabilizing, and even provides worse plans. 

 

Table 3: Optimizer Latency on JOB and STACK 

Optimizer JOB Latency (GMRL) STACK Latency (GMRL) 

PG (Baseline) 1.00 1.00 

Neo 0.85 0.94 

Balsa 0.69 0.75 

BASE 0.64 0.61 

 

5.4. End-to-End System Performance Gains 

When integrating workload forecasting, adaptive partitioning, and AI-assisted query planning, the system delivers substantial 

end-to-end gains. Resource utilization (effective work per unit CPU/GPU time) is increased by 27%. Mostly due to better distribution 

of load and minimized cross-node communication. Time-to-first-token (TTFT) with multi-shard inference-style workloads (e.g. Llama 

models running on multiple GPUs) can be improved by 40 (as seen in Table 4) as a result of more consistent routing as well as lower 
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queuing delays. The overall p95 latency performing the whole benchmark suite reduces by 18 percent than the case of no partitioning 

but with native optimizer. These findings point at the fact that forecasting and query optimization work better together than when 

applied separately: the forecaster does not create hotspots whereas the optimizer can use the existing layout and access remote data as 

minimally as possible. 

 

Table 4: End-to-End Performance 

Metric Static + PG Proposed Framework 

Resource Utilization (rel.) 1.00 1.27 

Time-to-First-Token (rel.) 1.00 0.60 

Overall p95 Latency (rel.) 1.00 0.82 

 

5.5. Comparison against Baseline Methods 

Table 5 compares learning dynamics of various optimizers on JOB workload. The time taken to achieve normalized latency 

GMRL of 1 (identical to the performance of PG) and the rate of training episodes per hour is reported. The LO base will take over 10 

hours to enter parity and generates 165 episodes/hour. Neo enhances convergence yet it requires 8.22 hours. This is reduced by Balsa 

to 5.02 hours with 207 episodes/hour throughput. BASE converges the quickest as it takes 4.73 hours to process 218 episodes/hour, 

which is the same as PG. The increased rate of episodes suggests superior sample efficiency and reduced per-training-step overhead 

that is essential when training proves to be an online application where training should be run in parallel with production traffic. 

Moreover, the transfer ratio of policy that is itself transferred over the past is 31.96% above Q-RTOS and direct, which indicates that 

almost a third of the desired policy quality may be imported by looking at past experience instead of reinventing the wheel. 

 

Table 5: Learning Dynamics on JOB 

Method Time to GMRL = 1 (hrs) Episodes/Hour 

LO >10 165 

Neo 8.22 192 

Balsa 5.02 207 

BASE 4.73 218 

 

5.6. Discussion on Scalability and Adaptiveness 

Scalability wise, the system can be scaled horizontally with automatic sharding and replication and the ML-driven partitioning 

engine ensures that there is no chronic hot-spot node in a cluster as the cluster size increases. Experiments of small scale to tens of 

nodes the results of experiments with fewer than 5 percent of queries to be considered long-running plans at the initial calibration 

show that the optimizer is able to avoid pathological join orders and ineffective access paths in the presence of skewed workloads. 

Active sampling techniques of BASE put exploration emphasis on regions of the plan space that are uncertain or of high impact, so that 

the optimizer can cope with the changing workload composition and data distribution. Transfer of policy also contributes to 

adaptiveness through reuse of learned behaviors on related schemas or on related workloads of tenants it saves training time through 

the transfer of policy (estimated to reduce training by about 30 percent) when migrating between clusters or when onboarding new 

applications. 

 

5.7. Limitations of the Proposed System 

The given framework has a number of limitations even though it has some advantages. First, the most precise models of 

forecasting especially Transformers can have a non-trivial overhead in computing and are only suitable to environments with GPU 

support or high-end CPU support; lightweight or edge-based deployments might need to resort to GRU/LSTM models or even a simple 

classical model with less accuracy. Second, the method is based on premium quality of telemetry and preprocesses: lack of data, rough 

sampling, or unstable measures may worsen the quality of forecasts and distort the partitioning engine. The traces are few or 

extremely sporadic, and this makes them hard to impute and deal with anomalies. Third, policy transfer operates on the assumption 

that the latency and cost environment are independent of workloads on a large scale; where this does not hold (e.g. radically different 

schema or hardware), policies being transferred might require extra safety checks and further scale retraining. The solution of these 

problems by resource-conscious model distillation, effective preprocessing pipelines, and enhanced safety assurances of transfer 

learning is still a valuable future project to ensure that the system is widely applicable in heterogeneous production settings. 
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6. Future Work and Conclusion 
This work introduced a unified framework that couples ML-driven workload forecasting with AI-assisted query optimization to 

enable adaptive partitioning in distributed databases. The system identically feeds the accurate load predictions into a partitioning 

engine as well as a learned optimizer to prevent skew, cross-partition communication, and enhances end-to-end latency relative to the 

schemes that are static and the existing optimizers. The experimental findings on transactional and analytical benchmarks indicate 

that the presented approach offers more balanced load, a smaller number of repartitioning operations, and up to the digit latency 

improvements over the strong baselines and converges faster than previously trained optimizers. These findings suggest that forward-

looking physical design, informed by predictive models rather than purely reactive heuristics, can substantially enhance performance 

in cloud-scale data platforms. 

 

There are a number of potential avenues available to the future research. To begin with, the forecasting and optimization parts 

can be further generalized with resource-scientific and topology-scientific model distillation, enabling the light variants of 

Transformers and learned cost models to efficiently execute in edge or low-resource settings. Second, robustness and safety should be 

further elaborated on: uncertainty estimates, fallbacks using confidence, and formal SLO-constrained repartitioning and plan selection 

would make automated methods of repartitioning and plan selection more reliable when using noisy telemetry and abrupt workload 

changes. Third, to generalize the framework to the multi-tenant and HTAP cases of analytical and transactional queries running 

simultaneously, will need more rich objective functions to trade off latency, fairness and cost between tenants and workloads. 

Ultimately, envision self-optimizing data platforms in which forecasting, partitioning, and query optimization are treated as a single 

closed-loop control problem, enabling distributed databases to continuously adapt to evolving applications with minimal human 

intervention. 
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