NextGen Scientific Publication Volume 7 Issue 6, Pg. No. 87- 91, AIJCST-V716P109, 2025
American International Journal of Computer Science and Technology d | https://doi.org/10.63282/3117-5481/AIJCST-V7I6P109

Original Article

Micro-Batch Financial Data Aggregation: Leveraging
Throttling for Scalable and Reliable Pipelines

*Surya Ravikumar
Independent Researcher, USA.

@ Article History:
Abstract:

Micro-batch processing has emerged as a pragmatic middle ground between monolithic batch ETL Received: 30.09.2025

rue record-at-a-ti T] ri redi r impli 1 .
and true record-at-a-time streaming, offering predictable throughput, simplified semantics and Revised: 05.11.2025

easy integration with batch-oriented sinks. In financial systems, where high-volume market feeds,

transaction logs and customer event streams coexist with strict consistency, latency and Accepted: 18.11.2025
compliance requirements; micro-batching combined with intelligent throttling (rate limiting and

backpressure strategies) provides an effective approach to build scalable, resilient and cost- Published: 30.11.2025
efficient aggregation pipelines. This paper reviews core concepts of micro-batching and throttling,

examines architectural patterns and trade-offs important to financial data aggregation and

presents design recommendations, operational controls and evaluation metrics. We also discuss

integration with modern streaming platforms and highlight practical techniques (adaptive

throttling, prioritized queues, idempotent sinks and checkpointing) that together deliver reliable,

exactly-once or strongly consistent aggregation with predictable resource usage.

Keywords:
Micro-Batch, Throttling, Backpressure, Financial Data Aggregation, Streaming, Spark Structured
Streaming, Kafka, Rate Limiting, Reliability, Scalability.

1. Introduction

Financial services generate massive, heterogeneous streams of data: audit logs, risk metrics, customer interactions, market ticks
and transaction events. High throughput, fault tolerance, rigorous ordering or exactly-once processing for compliance, low latency and
the capacity to degrade gracefully under load are needs that pipelines that aggregate and convert these data streams must meet. Small,
frequent batches of data are processed by micro-batch architectures which provide a mix between lower per-record costs compared to
big batch operations and easier consistency semantics compared to completely event-driven continuous processing. However, micro-
batch pipelines are vulnerable to overload and backpressure when input rates increase or downstream systems stall. Applied at the
production, ingestion or processing layer, throttling techniques reduce these surges and safeguard downstream sinks without going
against correctness guarantees. The best practices and methods for integrating throttle and micro-batching in financial aggregation
pipelines are compiled in this study and mapped to popular tools and practical limitations.

2. Background - Micro-batch vs Continuous Streaming vs Batch
Micro-batch processing splits a stream into small, contiguous groups of records that were gathered over a brief trigger interval
(such as 50-1000 ms) using micro-batch processing, which then processes each group as a single unit. Micro-batching offers an
attractive trade space when compared to continuous streaming (record-at-a-time or long-lived operator processing) and classical batch
(large, periodic runs). It has less overhead per record than large batches, is easier to map to batch-oriented storage and analytics and
has simpler checkpointing semantics than record-level processing. The same APIs can handle both batch and streaming workloads in
contemporary frameworks, such as Apache Spark Structured Streaming, which makes extensive use of micro-batch systems. When

https://hazelcast.com/foundations/software-architecture/micro-batch-processing/?utm_source=chatgpt.com

*Surya Ravikumar [2025] Micro-Batch Financial Data Aggregation: Leveraging Throttling for Scalable and Reliable

Pipelines

properly designed, continuous (record-by-record) processing can achieve lower latency and more precise event-time accuracy, but it
frequently comes with more complicated operator lifecycle semantics and state management. Micro-batching is still a useful, efficient
option for certain financial aggregation workloads when accuracy and auditability are crucial and microsecond latency is not

necessarily necessary. The goal of recent engine advancements (such as "continuous processing” modes) is to reduce latency, but
careful load-control and idempotency design are still necessary.

3. Why Throttling Matters in Financial Pipelines

Financial pipelines have unique pressure points:

>

Input spikes: Because of both expected and unpredictable market occurrences, financial pipelines frequently encounter
considerable volatility in the volume of incoming data. For instance, as institutional traders adjust their holdings and
algorithmic methods carry out their opening or closing orders, trading activity sharply surges during market open and close.
In a similar vein, significant economic announcements, geopolitical developments or unanticipated market shocks can cause a
surge in market ticks, trades and quotes that are above typical operating levels. Large datasets are also abruptly added to the
pipeline by operational actions like recovery jobs and historical backfills.

Downstream variability: Because of variables beyond the ingesting systems control, downstream components frequently
exhibit unpredictable behavior even when the upstream pipeline is reliable. Write operations may be momentarily slowed
down by databases performing scheduled backups, index rebuilds or maintenance. Throughput can be unpredictably reduced
by packet drops, network congestion or temporary connectivity problems. Additionally, a lot of financial systems rely on
external APIs that impose stringent rate limits or throttle requests during periods of high traffic, such as payment processors,
KYC/AML services or market data providers. If the upstream system continues to supply data at full speed at specific periods,
downstream systems may fail, time out, or reject requests. Throttling balances the speed of incoming data with the capacity
of downstream components to prevent cascading failures and stabilize the entire pipeline during periods of reduced
downstream performance.

Cost & resource constraints: Modern financial data pipelines frequently operate in cloud environments, where computation,
storage and network bandwidth have direct and quantifiable costs. More CPU, memory, I/O capacity and auto-scaling are
frequently required for higher throughput which can greatly raise running costs. Unexpected auto-scaling events that push
the system into higher cost tiers or exceed quota restrictions for computing, storage or managed services like Kafka partitions
or API gateway throughput could occur in the absence of throttling or rate control. Overusing storage or exceeding allotted
IOPS can also slow down other shared systems. By using throttling, financial organizations can prevent unnecessary scaling,
keep operating costs predictable, and stay within budget while still maintaining system reliability and data integrity.
Regulatory demands: Strict regulatory frameworks that require thorough, accurate and unchangeable audit trails for all
transactions, pricing events, client actions and risk calculations apply to financial institutions. Guarantees that no financial
data is lost, duplicated or processed incorrectly are required by regulators including the SEC, FINRA, FCA and ESMA,
especially for systems involved in trading, settlements, payments and risk reporting. These compliance standards are
immediately violated when a pipeline gets overloaded and starts dropping messages, timing out writes or skipping
checkpoints. In order to provide backpressure-driven retries, reliable state recovery and precise replay without losing records,
throttling serves as a safeguard that guarantees data is ingested and processed at a rate the system can manage safely. In
high-stakes financial situations, this controlled flow is crucial for preserving both regulatory-grade fault tolerance and
exactly-once guarantees.

In the absence of throttling, spikes may result in uncontrolled retries, out-of-memory problems, queue accumulation or silent

data loss. In order to prevent systemic failure while upholding service-level goals (SLOs), throttling , enforcing restricted admission or
slowing ingestion/processing and back pressure propagating demand limitations upstream are crucial.

88

*Surya Ravikumar [2025] Micro-Batch Financial Data Aggregation: Leveraging Throttling for Scalable and Reliable

Pipelines

@\Q
@7 : o> 4:’
@ AGGREGATOR FINTECH APP CONSUMER

BANKS

Figure 1. Financial Data Aggregator

4. Throttling Primitive Types and When to Use Them

Throttling can be implemented at several layers:

>

>

Producer-side rate limiting. Limit the rate at which upstream producers emit messages (token-bucket, leaky-bucket). Effective
when producers are under control (internal services, data gateways).

Broker/ingestion-side admission control. At message brokers (Kafka, Kinesis), apply ingress quotas, topic-level limits or
partition throttling. Useful to protect cluster throughput and storage budgets.

Consumer/processing-side pacing. The processing application (micro-batch scheduler) slows triggers, reduces parallelism or
deliberately drops low-value records. Works when processing resource constraints are the bottleneck.

Downstream sink throttling. Coordinate writes to external systems (databases, APIs) by batching, applying retry windows or
using buffer queues with bounded capacity.

Adaptive throttling & feedback-driven control. Observe metrics (lag, queue depth, CPU, latency) and adapt rates
automatically. e.g: reduce ingestion or increase batching window when consumer lag grows beyond thresholds.

Selecting the appropriate primitive depends on control surface (who you can change), SLOs (latency vs completeness) and
cost constraints.

5. Ensuring Correctness under Throttling

Financial systems require strong correctness guarantees:

>

Exactly-once / End-to-end semantics. Micro-batch engines like spark structured streaming provide end to end exactly once
when paired with replayable sources and idempotent sinks and with checkpointing enabled. Implement idempotent sink
writes to preserve correctness when throttling triggers retries or replays.

Ordering guarantees. Preserve ordering where required by partitioning based on natural keys (account id, instrument id) and
routing to dedicated partitions/slots.

Durability and audit. Keep immutable logs (e.g., write raw events to cold storage) to enable reprocessing/backfills and audit
trails-important for compliance.

Backpressure-safe semantics. When throttling causes ingestion delays, the system must preserve offsets and checkpoints so
that no data is lost; brokers with durable retention (Kafka) plus consumer checkpoints are critical.

6. Implementing Adaptive Throttling - Control Loops & Metrics

An effective adaptive throttling control loop requires:

>

Metrics: Real-time observability is crucial to adaptive throttling, which means the system must constantly gather metrics that
show both throughput capacity and early stress indicators. One of the most crucial metrics is consumer lag which illustrates
how quickly consumers are lagging behind producers. Batch processing time gives information about how long micro-batches
take to finish, if processing time is close to or longer than the micro-batch interval, the system is becoming unstable.
Measures of queue length such as internal buffer utilization, Redis queue size or Kafka partition depth, indicate increasing
strain on internal components. In addition to providing a clear picture of resource availability, CPU and memory use can be
used to identify memory leaks, garbage-collection stalls and saturation. Sink latency, which includes filesystem flush times,
database write delay and API response times, indicates whether downstream systems are becoming into bottlenecks. Lastly,
error rates that indicate whether components are already failing under load include timeouts, retries, commit failures and
backpressure events. By providing the pipeline with the situational awareness required to modify throughput in real time,
these metrics collectively serve as the cornerstone of an adaptive control loop.

89

https://downloads.apache.org/spark/docs/3.1.1/structured-streaming-programming-guide.html?utm_source=chatgpt.com

*Surya Ravikumar [2025] Micro-Batch Financial Data Aggregation: Leveraging Throttling for Scalable and Reliable

>

Pipelines

Policies: Following the definition of metrics, the system must implement regulations that indicate the permissible levels of
latency, lag or resource consumption before throttling operations are initiated. How far behind the pipeline is permitted
before the risk of data loss or SLA violation becomes intolerable is defined by a safe consumer lag threshold. For instance,
under typical demand, a pipeline may be able to withstand a latency of 10 seconds, but any lag longer than that could result in
rate constraints. In a similar vein, a maximum allowable batch processing time guarantees that a single micro-batch's
duration does not surpass the micro-batch interval; if it does, the system enters a runaway state where each subsequent batch
adds to the delay. Business or operational constraints, such as the need to process bank transactions within a regulatory
deadline or deliver market data within 500 milliseconds, are incorporated into SLO-driven latency budgets. The throttling
system employs these policies to convert high-level dependability goals into specific, implementable triggers that determine
whether to scale out resources, raise batch size or decrease input rate. Policies essentially act as barriers that specify the
pipeline's allowed operating envelope.

Actuators: When metrics surpass policy thresholds, actuators are the mechanisms that carry out throttling choices. By
lowering request velocity, modifying Kafka producer throughput or providing backpressure to upstream APIs, producer rate
limit adjustments are a popular actuator that slows down ingestion. Increasing the micro-batch interval is another lever that
allows users additional time to process each batch and stabilize latency without dropping messages. To momentarily boost
computation capacity during spikes, the control loop in distributed data systems may additionally extend the processing
cluster by adding extra executors, worker nodes or divisions. The system may use sampling or dropping policies in extreme
overload situations where it is impossible to maintain normal throughput, giving precedence to important messages while
discarding low-priority data in order to preserve service availability and avoid complete collapse. These actuators enable the
throttling system to balance reliability, cost, and compliance requirements by adaptively reconfiguring the pipeline in addition
to stabilizing performance.

Example algorithm (simplified):

>

>
>
>

Monitor consumer lag L and average batch processing latency B over the last N intervals.

If L > L_high or B > B_high: increase trigger interval (coarsen batching) and reduce producer quota by factor a.

If L < L_low and B < B_low: decrease trigger interval (finer batches) and relax quotas.

Adaptive strategies must guard against oscillation, employ hysteresis, rate of change limits and safe minimums for quotas.

7. Practical Techniques and Trade-offs
Batching vs latency trade-off. Increasing micro batch size reduces compute overhead but increases end to end latency. Choose
the trigger interval that satisfies business SLOs.
Buffer sizing and retention. Brokers and boundary queues must hold the worst-case backlog until processors catch up. Under
provisioned buffers force drop decisions or increased throttling.
Prioritization and sampling. Under extreme overload, degrade gracefully: sample non-critical analytics events, preserve
regulatory flows or offload lower-priority streams to cold processing.
Idempotency & deduplication. Implement idempotent sinks (dedupe by unique event IDs or use transactional writes) to safely
replay micro-batches. Checkpointing metadata and write-ahead logs are essential for fault recovery.
Cost vs performance. Scaling out compute reduces lag but increases cloud spend. Throttling provides a cost-effective
alternative to unbounded scaling while preserving service stability.

8. Tooling and Platform Considerations
Apache Spark Structured Streaming. Provides micro-batch execution, checkpointing, integration with Kafka and many sinks
and facilities like foreachBatch for custom sink semantics. It can be configured to use continuous processing modes in recent
versions, but micro-batch retains strong guarantees and wide adoption.
Apache Kafka. Durable broker that buffers events and supports quotas and throttling strategies. Managing topic partitions
and retention is crucial to handle spikes and enable safe replays. Consumer lag is the primary signal for backpressure
condition detection.
Other engines. Flink emphasizes record-at-a-time processing with advanced backpressure management; choosing between
Flink and Spark often depends on latency needs, developer expertise and stateful operator requirements. Continuous-
processing modes in Spark aim to reduce latency, but micro-batch remains widely used for financial aggregation patterns.

90

https://downloads.apache.org/spark/docs/3.1.1/structured-streaming-programming-guide.html?utm_source=chatgpt.com
https://downloads.apache.org/spark/docs/3.1.1/structured-streaming-programming-guide.html?utm_source=chatgpt.com
https://www.designandexecute.com/designs/how-to-manage-backpressure-in-kafka/?utm_source=chatgpt.com

*Surya Ravikumar [2025] Micro-Batch Financial Data Aggregation: Leveraging Throttling for Scalable and Reliable
Pipelines

9. Case Study - Conceptual Example
Scenario: A financial aggregation service ingests trade ticks and customer order events to compute aggregated risk metrics and
populate near-real-time dashboards. Requirements: 2-5 second max latency for dashboards, exactly-once aggregation updates to
prevent double-counting and preservation of settlement-critical events.

Design highlights:

» Producers publish to Kafka topics partitioned by instrument. Ingress gateway enforces per-producer quotas.

» A Spark Structured Streaming job triggers every 1 second under normal load and adaptively increases to 3 seconds if
consumer lag exceeds 30s.

» foreachBatch writes aggregated outputs into a transactional OLTP sink using upserts keyed by instrument+window. Raw
events are copied to object storage for audit and replay.

» High-priority settlement events are routed to a separate topic with reserved capacity and separate micro-batch job to ensure
low-latency handling.

» Monitoring pipeline measures consumer lag, batch duration, sink write latency and worker CPU. An automated control loop
adjusts gateway quotas and cluster auto scaling.

Outcome: Under spikes, the system gracefully increases batch size and reduces ingress rate, allowing essential settlement flows to
continue while delaying non-critical analytics, preserving correctness and avoiding sink overload.

10. Conclusion

A practical basis for financial data aggregation pipelines is created by combining micro-batch processing with carefully planned
throttling and backpressure controls. This hybrid strategy strikes a balance between throughput, cost and accuracy: throttling
safeguards downstream systems and maintains SLOs during load surges, while micro-batches streamline state handling and
checkpointing. Durable brokers (for replayability), idempotent sinks, adaptive control loops powered by transparent metrics and the
prioritizing of key flows should be given top priority in implementations. Organizations may create pipelines that are scalable,
dependable and auditable, fulfilling the rigorous demands of contemporary financial systems, by utilizing thorough testing,
observability and safe operational playbooks.

References

[1] Apache Spark Project. (2023). Structured Streaming Programming Guide. Apache Software Foundation.
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

[2] Sharad, S. (2024). How Apache Spark handles micro-batches and file processing in streaming workloads.
https://medium.com

[3] Fedorovych, L (2024). Performance benchmarking of continuous processing and micro-batching.
http://ceur-ws.org

[4] DesignAndExecute. (2025). How to Manage Backpressure in Kafka. https://designandexecute.com

[s] Microsoft Azure HDInsight Team. (2023). Exactly-once semantics with Apache Spark Streaming. Microsoft Documentation.
https://learn.microsoft.com

[6] Databricks. (2025). Use foreachBatch to write to arbitrary data sinks
https://docs.databricks.com

[7]1 DesignGurus. (2025). Backpressure in streaming data systems: Concepts and strategies. DesignGurus Publications.
https://designgurus.io

01

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://medium.com/
http://ceur-ws.org/
https://designandexecute.com/
https://learn.microsoft.com/
https://docs.databricks.com/
https://designgurus.io/

