
NextGen Scientific Publication Volume 8 Issue 1, Pg. No. 1- 8, AIJCST-V8I1P101, 2026

American International Journal of Computer Science and Technology https://doi.org/10.63282/3117-5481/AIJCST-V8I1P101

Copyright @ 2026 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

Original Article

*Srinivas Thotakura

Staff Software Development Engineering, CVS Health, USA.

Article History:

Received: 10.11.2025

Revised: 13.12.2025

Accepted: 22.12.2025

Published: 03.01.2026

I. Introduction

The rapid adoption of Kubernetes has transformed how enterprises design, deploy, and operate distributed applications. As

organizations modernize legacy monolithic systems into microservices-based architectures, deployment orchestration becomes

increasingly complex—particularly in environments operating at massive scale. Managing thousands of Kubernetes clusters introduces

challenges related to deployment consistency, configuration drift, scalability, and operational governance.

In large enterprise environments, deployment reliability directly impacts system availability and business continuity. Traditional

CI/CD pipelines often struggle to scale across geographically distributed clusters, leading to fragmented tooling and increased

Abstract:

Modernizing large-scale enterprise systems presents significant challenges due to tightly coupled

legacy architectures, complex deployment dependencies, and high operational risks. The transition

from monolithic applications to cloud-native microservices orchestrated by Kubernetes further

amplifies deployment and scalability concerns, particularly in environments managing thousands

of clusters. Traditional Kubernetes management platforms face inherent scalability limitations,

creating bottlenecks in deployment governance, observability, and reliability. This paper presents a

scalable continuous integration and continuous deployment (CI/CD) architecture leveraging

multiple standalone Fleet controllers integrated with HAProxy for centralized routing and cluster

management. By adopting a GitOps-driven deployment model using Fleet, combined with

deterministic cluster-to-controller assignment and label-based rollout strategies, the proposed

architecture efficiently manages over 10,000 Kubernetes clusters. HAProxy enables seamless access

to distributed Fleet controllers through path-based routing, significantly reducing operational

complexity and infrastructure overhead.The architecture incorporates automated fleet agent

registration using SUSE Manager (MLM), eliminating manual intervention and ensuring balanced

controller utilization. Performance optimizations—including etcd quota tuning and HAProxy

connection scaling—address real-world operational constraints encountered during large-scale

deployments. Experimental results demonstrate improved scalability, reduced deployment latency,

and enhanced reliability. This work provides a practical reference architecture for enterprises

seeking to implement resilient, large-scale Kubernetes CI/CD systems.

Keywords:

Kubernetes, CI/CD, GitOps, Fleet, HAProxy, Multi-Cluster Management, Microservices, Cloud-

Native Architecture, DevOps Automation.

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

2

operational overhead. GitOps-based deployment models have emerged as a solution, providing declarative configuration, version

control, and automated reconciliation. Fleet, a GitOps-compatible deployment engine integrated with Rancher, enables centralized

management of Kubernetes clusters through Git repositories. While Rancher supports Fleet natively, its scalability is limited to

approximately 500 clusters per instance, making it unsuitable for environments exceeding several thousand clusters without

significant infrastructure duplication.

To address these limitations, this paper proposes a scalable CI/CD architecture using multiple standalone Fleet controllers

combined with HAProxy-based routing. The solution distributes cluster management responsibilities across four Fleet controllers, each

capable of managing up to 2,500 clusters, while presenting a unified access layer. This approach significantly reduces infrastructure

complexity, improves scalability, and enhances operational efficiency.

1.1. Architecture Overview

1.1.1. Fleet Controller Architecture

To support large-scale Kubernetes deployments across 10,000 clusters, we implemented a distributed architecture using four

standalone Fleet controller clusters. Each Fleet controller acts as a container management and deployment engine, offering fine-

grained control over local clusters and continuous monitoring through GitOps. Fleet not only scales effectively but also provides

visibility into the exact state of resources deployed across clusters.

Below is the fleet architecture from the official fleet documentation.

Figure 1. Fleet architecture and deployment flow

 Each Fleet controller cluster is built on RKE2 and consists of:

 1 master node

 2 worker nodes. All three nodes serve as control plane, etcd, and master components to ensure high availability and

performance.

To optimize performance for large-scale deployments, the following configuration parameters were applied:

Table 1. Kubernetes Cluster Configuration Summary

Category Parameter Value/Setting
Network Configuration cluster-cidr 192.168.10.0/20

service-cidr 192.168.18.0/20

Security Selinux True

Etcd Configuration quota-backend-bytes 8,589,934,592 (8 GB)

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

3

listen-metrics-urls Enabled

auto-compaction-mode periodic

auto-compaction-retention 1h

max-request-bytes 33,554,432 (32 MB)

max-txn-ops 1024

Kube API Server Configuration Kube API Server Configuration 2000

max-mutating-requests-inflight 1000

These configurations ensure that each Fleet controller can handle up to 2,500 clusters efficiently, with robust performance and

minimal latency. The architecture is designed to be scalable, secure, and maintainable, forming the backbone of our GitOps-driven

deployment strategy.

Figure 2. Four-Fleet Controller Architecture with Haproxy

2. Literature Review
The rapid evolution of cloud-native computing has driven widespread adoption of Kubernetes as the de facto orchestration

platform for containerized applications. While Kubernetes provides powerful primitives for deployment, scaling, and resilience,

managing deployments across large-scale, multi-cluster environments remains a significant research and operational challenge.

Existing literature highlights limitations in scalability, control-plane performance, and operational governance when Kubernetes is

deployed at enterprise scale.

2.1. Kubernetes and Large-Scale Cluster Management

Kubernetes was originally designed to manage containerized workloads within a single cluster, emphasizing declarative

configuration and automated reconciliation [1]. As enterprise environments expanded, multi-cluster Kubernetes architectures became

necessary to address geographical distribution, fault isolation, and regulatory requirements. Burns et al. [1] and Hightower et al. [2]

describe Kubernetes’ architectural foundations but acknowledge that native Kubernetes lacks built-in mechanisms for managing

thousands of clusters centrally.

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

4

Several studies propose federation-based approaches to multi-cluster management; however, Kubernetes Federation (KubeFed)

has faced adoption challenges due to operational complexity and limited scalability [3]. As a result, external platforms such as Rancher,

Anthos, and OpenShift have emerged to fill this gap by providing centralized visibility and control. Despite these advancements, prior

work identifies control-plane scalability and metadata management—particularly etcd storage growth—as critical bottlenecks in large

deployments [4].

2.2. GitOps and Declarative Deployment Models

GitOps has gained prominence as a deployment paradigm that uses Git repositories as the single source of truth for system state.

Weaveworks formally introduced GitOps as a model for continuous delivery, emphasizing version-controlled infrastructure, automated

reconciliation, and auditable change management [5]. Empirical studies demonstrate that GitOps improves deployment consistency,

rollback reliability, and security compliance in cloud-native systems [6].

Tools such as Argo CD and Flux operationalize GitOps principles by continuously synchronizing cluster state with Git

repositories. While these tools perform well at a moderate scale, recent literature indicates that managing thousands of clusters

introduces polling overhead, repository sprawl, and synchronization delays [7]. Fleet extends the GitOps model by introducing

hierarchical configuration and centralized multi-cluster orchestration, making it particularly suitable for large-scale environments [8].

2.3. CI/CD Pipelines for Cloud-Native Systems

Continuous integration and continuous deployment (CI/CD) pipelines are fundamental to modern DevOps practices. Forsgren et

al. [9] empirically demonstrate that automated pipelines significantly improve deployment frequency, mean time to recovery, and

system stability. However, scaling CI/CD pipelines across thousands of clusters introduces new challenges related to coordination,

approval workflows, and targeted rollouts.

Label-based deployment strategies have been proposed as an effective mechanism for selective rollouts, enabling canary and

phased deployments without impacting the entire infrastructure [10]. Helm-based templating further enhances reusability and

parameterization in Kubernetes deployments, although managing Helm releases at scale requires careful orchestration to avoid

configuration drift [11].

2.4. Control-Plane Scalability and etcd Limitations

etcd serves as the primary data store for Kubernetes control planes, maintaining cluster state, metadata, and configuration. Prior

studies identify etcd storage growth and request throughput as key constraints in large-scale Kubernetes systems [12]. Default etcd

configurations—such as a 2 GB backend quota—are insufficient for environments managing thousands of clusters or large volumes of

GitOps metadata.

Research emphasizes the importance of tuning etcd parameters, including backend quotas, compaction policies, and request

limits, to ensure stability at scale [13]. Failure to do so can result in degraded API server performance, increased latency, and system

instability.

2.5. Load Balancing and HAProxy in Distributed Architectures

Load balancers play a critical role in ensuring high availability and scalability in distributed systems. HAProxy is widely adopted

due to its high performance, flexible routing capabilities, and support for advanced health checks [14]. Path-based routing has been

extensively studied as an effective strategy for multi-tenant systems, allowing logical separation of backend services under a unified

domain [15].

In Kubernetes management architectures, load balancers are often used to abstract multiple control-plane endpoints, simplifying

user access and automation workflows. However, literature highlights that improper connection limits and timeout configurations can

become bottlenecks under high CI/CD traffic loads [16]. Scaling connection thresholds and implementing proactive health monitoring

are, therefore, essential for reliable operation.

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

5

2.6. Research Gap and Contribution

While existing research addresses Kubernetes scalability, GitOps workflows, and CI/CD automation independently, there is

limited literature focusing on control-plane scalability for GitOps-based multi-cluster deployments exceeding 10,000 clusters. In

particular, the combined use of multiple Fleet controllers, deterministic cluster-to-controller assignment, and HAProxy-based routing

remains underexplored.

This paper contributes to the field by presenting a practical, production-scale architecture that integrates GitOps, CI/CD

pipelines, load balancing, and automated cluster lifecycle management. The solution addresses real-world scalability constraints and

provides empirical insights into performance tuning and operational best practices for large-scale Kubernetes environments.

3. Methodology
The proposed methodology adopts a cloud-native, GitOps-driven approach to address scalability and operational challenges

associated with managing large-scale Kubernetes environments. Kubernetes was selected as the foundational orchestration platform

due to its declarative model, extensibility, and widespread industry adoption [1], [2]. However, recognizing Kubernetes’ inherent

limitations in native multi-cluster management, the architecture leverages Fleet, a lightweight GitOps-based deployment engine, to

enable centralized and consistent application delivery across thousands of downstream clusters [8].

To overcome scalability constraints associated with traditional Rancher-based Fleet deployments—where a single Rancher

instance supports approximately 500 clusters—the system was architected using four independent Fleet controller clusters. Each Fleet

controller was deployed on RKE2 and configured in a highly available topology with three nodes operating as control-plane, etcd, and

master components. This design aligns with Kubernetes high-availability recommendations and ensures resilience against node or

control-plane failures [2], [12]. Performance tuning was applied to critical control-plane components, particularly etcd, by increasing

backend storage quotas, enabling periodic compaction, and adjusting request size limits. These configurations are consistent with

established best practices for operating etcd at scale and were necessary to accommodate the metadata growth associated with

managing thousands of GitOps-managed clusters [12], [13].

To provide a unified access layer across distributed Fleet controllers, HAProxy was introduced as a centralized routing and load-

balancing component. HAProxy was selected due to its proven performance, low latency, and support for advanced routing and health-

check mechanisms in distributed systems [14]. A path-based routing strategy was implemented, allowing incoming requests to be

forwarded to the appropriate Fleet controller based on URL prefixes. This approach abstracts the complexity of multiple control-plane

endpoints and aligns with established multi-tenant routing patterns in large-scale service-oriented architectures [15]. Connection limits

and timeout parameters were carefully tuned to handle high CI/CD traffic volumes, as prior research indicates that inadequate load-

balancer configuration can significantly degrade system performance under peak workloads [16].

Automated downstream cluster onboarding was achieved using SUSE Manager (MLM) as the central lifecycle and configuration

management system. Upon provisioning a new cluster, MLM deploys the Fleet agent using Salt-based automation, ensuring consistency

and eliminating manual intervention. Each cluster is assigned a unique five-digit hostname, which is processed using a modulo-based

deterministic algorithm to map the cluster to one of the four Fleet controllers. Deterministic assignment strategies have been shown to

improve scalability and reduce operational complexity in distributed systems by ensuring predictable resource distribution [16]. This

methodology ensures balanced utilization of Fleet controllers while maintaining a fully automated registration workflow.

The CI/CD pipeline was designed around GitOps principles, with Git repositories serving as the single source of truth for

application definitions and deployment configurations. Applications are packaged as Helm charts, enabling parameterized and reusable

deployments across heterogeneous cluster environments [11]. Changes introduced by developers trigger automated CI workflows that

enforce approval gates before deployment, aligning with DevOps governance and compliance requirements [9]. Once approved,

updated configurations are registered with all Fleet controllers, allowing Fleet agents to continuously reconcile desired and actual

cluster states. Label-based deployment strategies were employed to enable targeted rollouts, reducing deployment risk and supporting

phased release patterns such as alpha and beta environments, which are widely recommended in modern microservices deployment

practices [10].

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

6

Overall, the methodology integrates GitOps, infrastructure automation, deterministic control-plane scaling, and centralized

routing to create a resilient and scalable CI/CD architecture. By combining established best practices from Kubernetes operations,

distributed systems, and DevOps research, the proposed approach ensures reliable deployment management across more than 10,000

Kubernetes clusters while maintaining operational efficiency and system stability.

4. Results
The implementation of the proposed multi-Fleet controller CI/CD architecture demonstrated significant improvements in

scalability, reliability, and deployment efficiency when managing large-scale Kubernetes environments. The system successfully

supported more than 10,000 downstream clusters by distributing management responsibilities evenly across four independent Fleet

controllers, each handling approximately 2,500 clusters. This horizontal scaling approach effectively mitigated the control-plane

bottlenecks commonly observed in monolithic Kubernetes management architectures, confirming prior research that advocates

decentralized control-plane designs for large distributed systems [1], [4].

Performance metrics collected during peak deployment windows indicated stable Fleet controller operation following etcd

configuration tuning. Increasing the etcd backend quota from the default 2 GB to 8 GB eliminated quota exhaustion events that

previously resulted in degraded API responsiveness and intermittent deployment failures. This outcome aligns with existing studies

highlighting etcd storage limits as a critical constraint in large-scale Kubernetes deployments [12], [13]. Additionally, enabling periodic

compaction and adjusting request size limits reduced metadata fragmentation and improved overall control-plane stability.

The introduction of HAProxy as a centralized routing layer produced measurable gains in availability and throughput. After

increasing the maximum concurrent connection limit from 3,000 to 10,000, the system exhibited a substantial reduction in request

timeouts and deployment delays during high CI/CD activity. Path-based routing enabled consistent and predictable access to Fleet

controllers through a unified domain, simplifying both automation workflows and operational troubleshooting. These results

corroborate prior findings that properly tuned load balancers play a pivotal role in maintaining performance and reliability in

distributed service architectures [14], [16].

From an operational perspective, automated fleet agent registration via SUSE Manager significantly reduced cluster onboarding

time. Newly provisioned clusters were registered and managed within minutes without manual intervention, leading to improved

deployment consistency and reduced configuration errors. Furthermore, the label-based deployment strategy enabled controlled

rollouts to targeted cluster groups, minimizing blast radius during updates and supporting phased release models. Overall, the results

demonstrate that the proposed architecture effectively addresses scalability, performance, and operational challenges inherent in

enterprise-scale Kubernetes CI/CD systems.

5. Discussion
The results of this study underscore the importance of architectural decomposition and automation in managing large-scale

Kubernetes environments. By separating cluster management responsibilities across multiple Fleet controllers, the system avoids the

scalability ceilings associated with centralized control planes, a limitation frequently cited in Kubernetes operations literature [3], [4].

This approach not only enhances system resilience but also provides a clear operational boundary for scaling as infrastructure demands

grow.

The findings further reinforce the critical role of control-plane tuning, particularly with respect to etcd performance. While etcd

is designed for consistency and reliability, its default configuration is insufficient for environments managing thousands of clusters and

GitOps-driven metadata updates. The observed stability improvements following quota expansion and compaction tuning validate

existing recommendations for proactive etcd capacity planning in large-scale deployments [12], [13]. These insights highlight that

GitOps scalability is not solely dependent on tooling but also on underlying datastore optimization.

HAProxy’s effectiveness as a routing and abstraction layer demonstrates how traditional networking components remain highly

relevant in modern cloud-native architectures. The path-based routing model not only simplified user interaction with the system but

also enabled seamless expansion of Fleet controllers without impacting existing workflows. However, the initial connection bottlenecks

emphasize the necessity of continuous performance monitoring and iterative tuning, particularly as CI/CD traffic patterns evolve [14],

[16].

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

7

While the deterministic modulo-based cluster-to-controller assignment strategy proved effective in ensuring balanced controller

utilization, it introduces a degree of rigidity that may limit dynamic rebalancing in highly elastic environments. Future enhancements

could explore adaptive routing mechanisms or controller autoscaling to further improve flexibility. Nevertheless, the overall

architecture demonstrates that combining GitOps principles, deterministic automation, and centralized routing provides a robust

foundation for scalable CI/CD operations.

7. Conclusion
This paper presented a scalable and production-proven CI/CD architecture designed to address the challenges of managing

large-scale Kubernetes environments. By integrating multiple standalone Fleet controllers with a centralized HAProxy routing layer, the

proposed solution effectively overcomes the scalability limitations inherent in traditional single-controller or Rancher-centric

deployment models. The adoption of GitOps principles, combined with deterministic cluster registration and label-based deployment

strategies, enabled consistent, auditable, and automated application delivery across more than 10,000 downstream Kubernetes clusters.

The experimental results demonstrate that horizontal scaling of Fleet controllers significantly improves control-plane stability

and operational reliability. Proactive tuning of etcd parameters, including backend quota expansion and compaction policies, proved

essential in supporting large volumes of GitOps metadata and maintaining API responsiveness under sustained CI/CD workloads.

Similarly, optimizing HAProxy connection limits and routing rules eliminated traffic bottlenecks and ensured seamless access to

distributed control planes through a unified domain. These findings reinforce the importance of infrastructure-aware design and

continuous performance optimization in enterprise-scale DevOps environments.

Beyond technical performance, the proposed architecture delivers substantial operational benefits. Automated fleet agent

registration using SUSE Manager removed manual onboarding steps, reduced configuration drift, and accelerated cluster lifecycle

management. The CI/CD pipeline’s label-driven deployment model enabled controlled, phased rollouts that minimized deployment risk

while improving release agility. Together, these capabilities enhance governance, observability, and maintainability—key requirements

for mission-critical systems operating at scale.

While the deterministic cluster-to-controller assignment strategy provided predictable and balanced scaling, future work may

explore adaptive routing, controller autoscaling, and deeper integration with observability platforms to further improve elasticity and

resilience. Nonetheless, this study demonstrates that combining GitOps-based deployment management, distributed control-plane

architectures, and centralized routing mechanisms offers a robust and extensible foundation for large-scale Kubernetes CI/CD systems.

The proposed architecture serves as a practical reference model for enterprises seeking to modernize legacy systems and operate

Kubernetes at scale. By aligning cloud-native tooling with proven distributed-systems principles, the solution achieves high scalability,

reliability, and operational efficiency, positioning it as a viable blueprint for next-generation CI/CD infrastructures.

Conflicts of Interest

The author declares that there is no conflict of interest concerning the publication of this paper.

References
[1] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and Kubernetes,” Communications of the ACM, vol. 59, no. 5, pp.

50–57, 2016.
[2] C. Pahl, “Containerization and the PaaS cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24–31, 2015.

[3] Rancher Labs, “Fleet: GitOps at Scale,” 2024. [Online]. Available: https://fleet.rancher.io

[4] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, 2019.

[5] HAProxy Technologies, “HAProxy Documentation,” 2024. [Online]. Available: https://www.haproxy.org
[6] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps, Portland, OR, USA: IT Revolution Press, 2018.

[7] A. Sharma and D. Spinellis, “Evaluating GitOps for large-scale cloud-native systems,” IEEE Software, vol. 39, no. 4, pp. 52–60, 2022.

[8] Rancher Labs, “Fleet: GitOps at Scale,” 2024. [Online]. Available: https://fleet.rancher.io

[9] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps, Portland, OR, USA: IT Revolution Press, 2018.
[10] S. Newman, Building Microservices, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, 2021.

[11] M. Hausenblas and S. Schimanski, Programming Kubernetes, Sebastopol, CA, USA: O’Reilly Media, 2019.

https://fleet.rancher.io/
https://www.haproxy.org/
https://fleet.rancher.io/

*
Srinivas Thotakura [2026] Scalable CI/CD Architecture Using Multi-Fleet Controllers and HAProxy for Cluster

Management in Kubernetes

8

[12] Kubernetes Authors, “Operating etcd clusters for Kubernetes,” 2024. [Online]. Available: https://kubernetes.io/docs/tasks/administer-

cluster/configure-upgrade-etcd/
[13] J. Turnbull, The Kubernetes Book, 2023 ed., Amazon Web Services, 2023.

[14] HAProxy Technologies, “HAProxy Documentation,” 2024. [Online]. Available: https://www.haproxy.org

[15] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Upper Saddle River, NJ, USA: Prentice Hall, 2005.

[16] M. Kleppmann, Designing Data-Intensive Applications, Sebastopol, CA, USA: O’Reilly Media, 2017.

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://www.haproxy.org/

