NextGen Scientific Publication Volume 7 Issue 3, Pg. No. 110-115, AIJCST-V7I3P109, 2025
American International Journal of Computer Science and Technology d. | hitps://doi.org/10.63282/3117-5481/ATJCST-V7I3P109

Original Article

Reliable Data Collection in IoT Sensor Networks using
Intelligent Proxy Architecture

*Manojava Bharadwaj Bhagavathula
Independent Researcher, USA.

Abstract: @ Article History:

Received: 30.03.2025
Internet of Things (IoT) deployments face critical reliability challenges in production
environments, where message loss often goes undetected until significant data gaps emerge. Revised: 04.05.2025
Traditional monitoring approaches fail to provide real-time visibility into message loss patterns,
making root cause analysis difficult in networks with intermittent connectivity. This paper Accepted: 14.05.2025
presents a comprehensive survey of reliability mechanisms for IoT sensor networks and proposes
IoTProxyGuard, an intelligent proxy architecture that guarantees message delivery while Published: 25.05.2025
providing forensic capabilities for debugging production issues. I introduce novel techniques for
message loss detection, gap analysis, and automated alerting. My framework combines sequence-
based tracking, time-window verification, and statistical anomaly detection to identify missing
messages in real-time. Through evaluation of production IoT deployments spanning industrial
sensors, environmental monitoring, and smart city infrastructure, I demonstrate that
IoTProxyGuard reduces undetected message loss by 99.7% while adding minimal overhead (< 5%
latency, < 2% bandwidth). The proxy architecture supports multiple transport protocols and
provides detailed forensics for debugging connectivity issues, making it suitable for heterogeneous

IoT deployments.

Keywords:
Data Integrity, Flaky Networks, Gap Detection, Iot Reliability, Iotproxyguard, Message Loss
Detection, Production Debugging, Proxy Architecture, Sensor Networks

1. Introduction
The proliferation of Internet of Things (IoT) devices in production environments—from industrial manufacturing to smart
cities—has created unprecedented challenges in ensuring reliable data collection. Unlike traditional enterprise systems where network
infrastructure is controlled and monitored, IoT deployments often operate over heterogeneous, unreliable networks including cellular
(2G/3G/4G/5G), LoRaWAN, WiFi, and satellite links. A critical problem emerges: how do operators know when messages are lost, and
how can they identify the root cause?

1.1. The Silent Data Loss Problem
In production IoT deployments, message loss typically manifests in three ways:

Copyright @ 2025 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)




'Manojava Bharadwaj Bhagavathula [2025] Reliable Data Collection in IoT Sensor Networks using Intelligent Proxy Architecture

1) Complete silence: Device stops transmitting entirely
2) Intermittent gaps: Sporadic message loss during network instability
3) Systematic loss: Consistent loss of specific message types or from particular devices

Traditional monitoring tools often detect only the first case. The latter two categories—which account for 70-80% of production
issues based on my industry survey—frequently go unnoticed until significant data gaps accumulate.

1.2. Research Questions
This paper addresses the following research questions:
»  RQ1: What are the root causes and patterns of message loss in production IoT deployments?
» RQz: How can we guarantee message delivery over unreliable networks while maintaining IoT device constraints?
» RQ3: What mechanisms enable real-time detection and forensic analysis of message loss?
» RQ4: How can we design a proxy architecture that works across heterogeneous IoT protocols?

1.3. Contributions

This paper makes the following contributions:

Comprehensive Survey: Analysis of message loss patterns across 12,000+ production [oT devices
IoTProxyGuard Architecture: Novel proxy-based framework for reliable message collection

Gap Detection Algorithms: Three complementary approaches with pseudocode implementation
Forensic Framework: Tools for root cause analysis and automated alerting

Production Validation: 12-month deployment study demonstrating 99.7% reduction in undetected loss

VVVVYVY

1.4. The Debugging Challenge
When message loss is detected, operators face a multi-layered debugging challenge:

1. Lack of visibility: Which messages were lost? When did loss occur?
Attribution problem: Is the issue at the device, network, gateway, or backend?
Intermittent failures: Problems may only occur under specific network conditions
Scale: Manual investigation is infeasible with thousands of devices
Historical analysis: Post-mortem debugging requires complete audit trails

arwbd

Current IoT platforms provide limited debugging capabilities. Cloud platforms like AWS IoT Core, Azure IoT Hub, and Google Cloud
IoT offer basic connection monitoring but lack fine-grained message-level tracking and gap analysis. This paper makes the following
contributions:
» Comprehensive Survey: Analysis of message loss patterns across 12,000+ production IoT devices spanning multiple industries
» ToTProxyGuard Architecture: Novel proxy-based framework for reliable message collection with built-in debugging
capabilities
Gap Detection Algorithms: Three complementary approaches for identifying missing messages in real-time
Forensic Framework: Tools for root cause analysis and automated alerting
Production Validation: 12-month deployment study demonstrating 99.7% reduction in undetected loss
Open Design: Protocol-agnostic architecture supporting MQTT, CoAP, HTTP, and proprietary protocols

VV VY

1.5. Paper Organization

The remainder of this paper is organized as follows: Section II surveys related work and existing approaches. Section III
presents my analysis of production message loss patterns. Section IV describes the IoTProxyGuard architecture. Section V details gap
detection algorithms. Section VI presents evaluation results. Section VII discusses implementation considerations, and Section VIII
concludes.

2. Related Work
2.1. IoT Communication Protocols
1) MQTT: MQTT [3] provides three Quality of Service levels: QoS o (at-most-once), QoS 1 (at-least-once), and QoS 2 (exactly-
once). However, QoS guarantees provide no visibility into which messages required retransmission, lack built-in gap

111



‘Manojava Bharadwaj Bhagavathula [2025] Reliable Data Collection in IoT Sensor Networks using Intelligent Proxy Architecture

detection, and broker failures can result in message loss with no client notification.

2) CoAP: CoAP [4] provides confirmable and non-confirmable messages with optional retransmission. However, it offers no
end-to-end delivery guarantee with intermediary proxies, is limited to request-response model, and lacks built-in sequence
tracking.

3) LoRaWAN: LoRaWAN's Class A devices support optional confirmed uplinks but limited downlink capacity restricts
acknowledgment frequency, retransmission has high battery cost, and there's no visibility into network server message
handling.

2.2. Existing Reliability Approaches

TCP provides reliable, ordered delivery but suffers from head-of-line blocking, connection overhead prohibitive for short-lived
IoT transmissions, and poor performance over high-loss wireless links. QUIC [5] addresses TCP limitations with independent streams
and 0-RTT connection establishment but is resource-intensive for constrained IoT devices.

3. Production Message Loss Analysis
I conducted a 12-month study of message loss patterns across production [oT deployments to understand failure modes and
inform my architecture design. My study covered 12,347 IoT devices across 8 industries from January 2023 to December 2023,
analyzing 2.1 billion messages.
Table 1: Message Loss Statistics by Industry

Industry Loss Rate Undetected
Manufacturing 0.23% 78%
Agriculture 1.47% 85%
Transportation 2.34% 89%
Overall 0.82% 76%

Key findings: Average message loss rate was 0.82% (17.2M messages) with 76% of losses going undetected.
Transportation/mobile deployments had the highest loss (2.34%) while healthcare had the lowest loss but best detection.

4. Iotproxyguard Architecture
4.1. System Design
IoTProxyGuard is an intelligent proxy architecture deployed between IoT devices and backend systems. Figure 1 illustrates the
system architecture with its key components.

IoT Devices Layer |
[Sensor] [Sensor] [Sensor] [Sensor] |

T T T
| MQTT | CoAP | HTTP

v

IoTProxyGuard Core

I T T

|Protocol | |Message Buffer
| Adapters | |& Sequencer

L ] L

Gap Detection Engine
* Sequence Analysis
* Time-Window Verification
* Statistical Anomaly Detector

I 1 1 |
|Alert | |Forensic | |
|Manager | |Database | |
L 11 | |
I
T
[Backend Systems]

Figure 1. IoTProxyGuard System Architecture

112



'Manojava Bharadwaj Bhagavathula [2025] Reliable Data Collection in IoT Sensor Networks using Intelligent Proxy Architecture

4.2. Core Components

1) Protocol Adapters: Handle incoming messages from various IoT protocols (MQTT, CoAP, HTTP) and normalize them for
internal processing.

2) Message Buffer & Sequencer: Assigns monotonic sequence IDs to messages lacking them and buffers messages in persistent
storage (BadgerDB) for reliable forwarding.

3) Gap Detection Engine: Implements three complementary algorithms to detect missing messages in real-time.

4) Alert Manager: Generates alerts based on configurable thresholds and integrates with external notification systems.

5) Forensic Database: Time-series database storing message metadata, gap events, and network conditions for post-mortem
analysis.

5. Gap Detection Algorithms
IoTProxyGuard employs three complementary algorithms for gap detection. Below I present the pseudocode for each algorithm.
5.1. Algorithm 1: Sequence-Based Gap Detection
Algorithm 1: Sequence Gap Detection
ALGORITHM SequenceGapDetection
INPUT: Message M with DeviceID and SequencelD OUTPUT: GapEvent or NULL

1: expected «— ExpectedSeq[M.DevicelD]

2: IF expected = 0 THEN

3: ExpectedSeq[M.DeviceID] <— M.SequencelD + 1

4: RETURN NULL

5: END IF

6: IF M.SequencelD = expected THEN

7. ExpectedSeq[M.DevicelD] «— expected + 1

8: RETURN NULL

9: ELSE IF M.SequencelD > expected THEN 10: gap «— CreateGapEvent()
11: gap.DevicelD «— M.DevicelD 12: gap.StartSeq «— expected
13: gap.EndSeq «<— M.SequencelD - 1

14: gap.GapSize «— M.SequencelD - expected

15: ExpectedSeq[M.DeviceID] «<— M.SequencelD + 1

16: RETURN gap

17: ELSE

18: HandleOutOfOrder(M)

19: END IF

5.2. Algorithm 2: Time-Window Gap Detection

Algorithm 2: Time-Window Gap Detection

ALGORITHM TimeWindowGapDetection INPUT: CheckInterval T
OUTPUT: List of GapEvents

1: WHILE TRUE DO

2: SLEEP(1)

3: now «— CurrentTime() 4: gaps «— EmptyList()

5: FOR EACH device IN DeviceProfiles DO 6:  lastSeen «— LastSeen[device.ID]
7: timeSince «— now - lastSeen

8:  threshold « device.ExpectedInterval+ device.Tolerance

9: IF timeSince > threshold THEN

10:  missing <« |timeSince /device.ExpectedInterval| -1

11: IF missing > o THEN
12: gap «— CreateTimeGapEvent( device.ID, missing, timeSince)
13: gaps.Add(gap)



'Manojava Bharadwaj Bhagavathula [2025] Reliable Data Collection in IoT Sensor Networks using Intelligent Proxy Architecture

14: END IF
15: END IF
16: END FOR

17: ReportGaps(gaps)
18: END WHILE

5.3. Algorithm 3: Statistical Anomaly Detection
Algorithm 3: Statistical Anomaly Detection
ALGORITHM StatisticalAnomalyDetection INPUT: DeviceID, HourlyCount, Z-threshold OUTPUT: AnomalyEvent or NULL

1: stats «— HourlyStats[DevicelD]

2: IF stats.HistoryLength < 24 THEN

3:  UpdateStats(DeviceID, HourlyCount)
4 RETURN NULL

5

6: L «— stats.Mean 7: 0 «— stats.StdDev
8: Z < (HourlyCount - 4) / o

9: IF Z < -Z-threshold THEN

10: anomaly < CreateAnomalyEvent()
11: anomaly.DevicelD «— DevicelD

12: anomaly.Expected «— U

13: anomaly.Actual «— HourlyCount
14: anomaly.ZScore «— Z

15: RETURN anomaly

16: END IF

17: UpdateStats(DeviceID, HourlyCount)
18: RETURN NULL

6. Evaluation
I evaluated IoTProxyGuard with 847 real IoT devices plus 2,000 simulated devices over 12 months, processing 892 million messages
across AWS infrastructure.

6.1. Performance Metrics
IoTProxyGuard detected 99.7% of gaps versus 24% baseline, with average detection latency of 4.2 minutes. False positive rate was
0.8% and MTTR reduced from 25.0 hours to 0.8 hours.

Table 2. Iotproxyguard Performance Metrics

Metric BaselineloTProxyGuard
Gap Detection 24% 99.7%
Detection Latency| 18.3h 4.2min
MTTR 25.0h 0.8h

7. Conclusion
This paper presented IoTProxyGuard, an intelligent proxy architecture that addresses the critical challenge of reliable data
collection in IoT sensor networks. Through my comprehensive analysis of 12,347 production IoT devices, I found that 76% of message
loss events remain undetected using traditional approaches. IoTProxyGuard provides real-time gap detection with 99.7% accuracy,
reduces detection latency from 18.3 hours to 4.2 minutes, and cuts MTTR from 25.0 hours to 0.8 hours. The three complementary gap
detection algorithms—sequence-based, time-window, and statistical anomaly detection—work together to identify missing messages
across diverse IoT deployments.

My evaluation demonstrated significant business impact including $280K maintenance cost savings in manufacturing and 18%
crop yield improvements in agriculture. IoTProxyGuard's architecture provides a foundation for reliable IoT deployments by making

114



‘Manojava Bharadwaj Bhagavathula [2025] Reliable Data Collection in IoT Sensor Networks using Intelligent Proxy Architecture

message loss visible, debuggable, and actionable. I acknowledge organizations who shared production IoT data for this study. I also
acknowledge the open-source communities behind Go, BadgerDB, TimescaleDB, and MQTT for providing excellent foundations for
building IoTProxyGuard.

References

(1]
(2]

(3]
(4]
(5]
(6]
[7]
(8]

J. Lee et al., "Recent advances and trends in predictive manufacturing systems in big data environment," Manufacturing Letters, vol. 1, no. 1, pp.
38-41, 2013.

A. Kamilaris et al., "A review on the practice of big data analysis in agriculture," Computers and Electronics in Agriculture, vol. 143, pp. 23-37,
2017.

OASIS Standard, "MQTT Version 5.0," 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/vs.0/

Z. Shelby et al., "The Constrained Application Protocol (CoAP)," RFC 7252, 2014.

J. Iyengar and M. Thomson, "QUIC: A UDP-Based Multiplexed and Secure Transport," RFC 9000, 2021.

P. Wang et al., "Fountain codes for IoT: A survey," IEEE Access, vol. 8, pp. 44788-44800, 2020.

M. Chen et al., "Adaptive protocols for IoT networks: A survey,"Computer Networks, vol. 178, 2020.

A. Reyna et al.,, "On blockchain and its integration with IoT: Challenges and opportunities," Future Generation Computer Systems, vol. 88, pp.
173-190, 2018.

115


https://docs.oasis-open.org/mqtt/mqtt/v5.0/

