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1. Introduction 
The proliferation of edge computing has shifted data generation from centralized  datacenters to distributed edge 

locations—factories, vehicles, and remote installations.  While this shift reduces latency for local processing, it creates a 

significant challenge for  data aggregation: reliably delivering critical telemetry and event data to the cloud overunreliable 

networks (Shi et al., 2016). 

 

1.1. Motivation 

In mission-critical systems such as industrial automation or healthcare monitoring,  message loss is not an option. A 

missing sensor reading could indicate a missed failure  precursor; a lost command could delay safety-critical actuation. 

However, edge networks often rely on cellular (LTE/5G), satellite, or Wi-Fi connections that are prone to packet loss, high jitter, and 

extended outages. 
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1.2. Problem Statement 

Standard transport layers like TCP provide reliability only while a connection is active. They do not handle: 

 Connection Persistence: Queuing messages during extended outages (hours or days).  

 Application Semantics: Ensuring messages are processed exactly once, not just deliv-ered.   

 Resource Constraints: Buffering reliably on devices with limited flash storage and RAM. 

 

Thus, reliability must be engineered at the application and protocol layers. 39 

 

1.3. Scope and Contributions 

This survey contributes: 

1. A taxonomy of reliability challenges in edge-cloud systems. 

2. A detailed analysis of standard protocols (MQTT, AMQP, Kafka, QUIC) regarding their reliability guarantees. 

3. A catalog of architectural reliability patterns (Store-and-Forward, Outbox Pattern). 

4. A comparative evaluation framework for selecting appropriate mechanisms. 

 

2. Key Challenges in Edge-Cloud Messaging 
2.1. Network Unreliability and Partitioning 

Edge devices frequently experience "flapping" connections or total partitions. Systems must distinguish between transient 

failures (retriable immediately) and long-term outages (requiring disk buffering). The CAP theorem implies that during these 

partitions, systems must choose between consistency (strong ordering) and availability (accepting new local writes). 

 

2.2. Resource Constraints 

Edge gateways often run on ARM-based hardware with limited RAM (e.g., 2-8 GB) and flash storage. Infinite in-memory 

buffering is impossible. Writing to disk (Store-and-Forward) introduces I/O bottlenecks and flash wear concerns. Reliability 

mechanisms must be lightweight. 

 

2.2. Throughput vs. Reliability Trade-offs 

Mechanisms like synchronous acknowledgments (ACKs) and transactions reduce throughput significantly. Achieving 

high throughput (e.g., for video analytics or vibration data) while guaranteeing delivery requires batching, compression, and 

asynchronous  reliability patterns. 

 

2.3. Data Consistency and Ordering 

Ensuring First-In-First-Out (FIFO) processing is difficult when utilizing multi-path routing or parallel ingestion 

consumers. Duplicate delivery (At-Least-Once) is common during retries; handling this requires idempotent consumers. 

 

3. Survey of Communication Protocols  
3.1. MQTT (Message Queuing Telemetry Transport) 

MQTT is the dominant protocol for IoT connectivity due to its lightweight header (2 bytes) and publish-subscribe model 

(Mishra & Kertesz, 2020). 

 Reliability: Offers three QoS levels. QoS 1 (At-least-once) and QoS 2 (Exactly-once) utilize persistent storage on both client 

and broker to ensure delivery across reconnects (Thangavel et al., 2014). 

 Session Persistence: The CleanSession=false flag allows the broker to queue mes-sages for a disconnected client. 

 Limitation: QoS 2 has high latency overhead due to the 4-way handshake. 

 

3.2. AMQP (Advanced Message Queuing Protocol) 

AMQP 1.0 is a binary wire protocol focused on enterprise reliability (OASIS, 2012). 

 Reliability: Supports strong transaction guarantees and flexible routing. Messages can be settled (ACKed) independently 

of transfer. 

 Flow Control: Built-in link credit system manages backpressure natively. 

 Suitability: Excellent for edge gateways aggregating data, but heavy for constrained sensors. 
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3.3. CoAP (Constrained Application Protocol) 

Designed for UDP-based constrained networks (Shelby et al., 2014; Thangavel et al., 2014). 

 Reliability: Uses "Confirmable" (CON) messages to implement a lightweight ACK layer over UDP. 

 Suitability: Best for extremely low-power networks (LoRaWAN, NB-IoT) where TCP overhead is prohibitive. 

 

3.4. Kafka / Pulsar (Log-Based Streaming) 

While primarily data center technologies, lightweight adaptors allow edge deployment (Wang et al., 2021). 

 Reliability: Durability is achieved via disk logs. Consumers track their own offsets, allowing replayability. 

 Pattern: Edge devices often use a lightweight forwarder (e.g., vector, fluentd) to buffer locally and produce to a central 

Kafka cluster. 

 

3.5. QUIC and HTTP/3 

QUIC improves upon TCP by operating over UDP (Iyengar & Thomson, 2021; Contr-eras & Baliosian, 2018). 

 Reliability: Eliminates Head-of-Line (HoL) blocking. Loss of one packet in a stream doesn’t stall other streams. 

 Suitability: Ideal for unreliable cellular networks where connection migration (switch-ing between Wi-Fi and LTE without re-

handshake) is valuable. 

 

4. Architectural Reliability Patterns 
4.1. Store-and-Forward 

The most fundamental pattern for edge reliability (Bonomi et al., 2012; Gupta & Singh, 2019). Messages are written to local persistent 

storage (SQLite, embedded key-value store, or disk queue) before transmission is attempted. 

 Edge Queue: A local circular buffer ensures new data overwrites oldest data only when storage is full, preserving the 

most critical recent context or oldest critical context depending on policy. 

 Forwarder: A separate thread reads from the queue and sends to the cloud, deleting local copies only upon receiving an 

application-level ACK. 

 

4.2. Application-Level Acknowledgments 

Transport ACKs (TCP ACK) only prove data reached the OS kernel. Application ACKs prove the cloud service processed (or 

persisted) the data. 

 Mechanism: The edge device retains the message until it receives a specific HTTP 200 OK or MQTT PUBACK packet 

containing the message ID. 

 

4.3. Idempotency and Deduplication 

To support "Exactly-Once" processing with "At-Least-Once" delivery infrastructure: 

 Unique IDs: Every message is assigned a UUID or monotonic sequence number at the source (edge). 

 Cloud De-duplication: The cloud ingestion layer caches seen IDs (e.g., in Redis) and discards duplicates, ensuring 

downstream analytics see accurate data counts (Li et al., 2021). 

 

4.4. Dual-Path Routing 

For critical alarms, devices may utilize multiple network interfaces simultaneously (e.g., LTE and Satellite). 

 Pattern: Send message clones over all interfaces. The cloud accepts the first arrival and discards the rest. 

 Cost: Increases data usage but minimizes latency and maximizes delivery probability. 

 

5. Comparative Analysis 
Table 1 summarizes the trade-offs between protocols. 

Table 1. Protocol Comparison for Reliable Edge Messaging 

Protocol Reliability Overhead Persistence Edge Fit 

MQTT QoS 1/2 Low Session High 

AMQP Transactions High Queue Medium 
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CoAP CON Msgs Very Low None High (Sensor) 

HTTP/REST App Retry Medium None Low 

Kafka Log Commit High Disk Log Medium (Gateway) 

QUIC Stream Medium None High (Mobile) 

 

6. Future Directions 
6.1. AI-Driven Connectivity Management 

Future edge agents will use ML models to predict connectivity outages based on geolocation (e.g., knowing a vehicle is 

entering a tunnel) and preemptively buffer data or aggressively upload critical packets (Chen et al., 2019). 

 

6.2. Decentralized Consensus 

Blockchain and DAG (Directed Acyclic Graph) technologies are being explored to guarantee message integrity and 

ordering across decentralized edge nodes without a single central authority, useful for multi-party supply chains (Corsaro & Orsini, 

2021; Fernandez et al., 2021). 

 

7. Conclusion 
Reliable message delivery in distributed edge-cloud systems requires a multi-layered approach.  While protocols like MQTT 

and QUIC provide transport optimization, true reliability is achieved through architectural patterns: local persistence (Store-and-

Forward), application-level acknowledgments, and rigorous idempotency handling. Architects must balance the strictness of 

delivery guarantees (QoS) against the latency and storage costs inherent in constrained edge environments.   
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