
NextGen Scientific Publication Volume 2 Issue 6, Pg. No. 14-23, AIJCST-V2I6P102, 2020

American International Journal of Computer Science and Technology https://doi.org/10.63282/3117-5481/AIJCST-V2I6P102

Original Article

* B. Subashini1, Teena Richard2, C. Priyadarshini3

1,2,3School of Information Systems, Madras Institute of Technology, Chennai, India

 Article History:

Received: 15.09.2020

Revised: 17.10.2020

Accepted: 30.10.2020

Published: 07.11.2020

1. Introduction
1.1. Background

Functionality, reliability, and efficiency have been traditionally relied on human expertise and attention to the code and the
use of trial and error to validate software development. With the increase in the complexity of software systems, including the size
of the codebases, the use of multiple programming languages, and the complexity of the interdependencies among these software
components the traditional approaches to development have become highly challenged with their ability to ensure scalability,
productivity and run times with zero mistakes. Here, Generative Foundation Models (GFMs) have become new disruptive
technology that introduces a new vision in designing, creating, and optimizing software. They learn patterns and structures and

Abstract:

Generative foundation models (GFMs) have become a game changer in artificial intelligence (AI)

with massive implications on software development and computational reasoning. These models,

typified by both their large-scale training on a wide variety of datasets, and their ability to perform

self-supervised learning, have shown impressive versatility across both code generation and

computer optimization as well as the more complex problems in the fields of science and

engineering. The paper will discuss how GFMs affect the practice of software engineering in the

contemporary setting, and computational reasoning. We look at how generative models have

evolved, how they relate to their architectures and how they have come to be a part of software

development life cycles. More so, we examine how they are useful in automating coding procedures,

improving software quality, extracting knowledge, and decision-making using computational

reasoning. The developers can minimize the manual coding time using GFMs speeding up

prototyping as well as increasing system robustness. Nevertheless, these models also come with

certain challenges, such as the matter of ethics, biases, insecurity, and domain-specific adaptation.

These challenges are addressed in the paper and the ways of reducing the risks involved. Based on

the thorough examination of the literature available, the frameworks of methodologies, and case

studies, we provide an in-depth discussion of the transformative value of GFMs in software creation

and computer inference. Our results underscore the need to approach integration of generative

models in a responsible manner, but in ways that are interpretable, accountable as well as

sustainable computational.

Keywords:

Generative Foundation Models, Software Development, Computational Reasoning, Artificial

Intelligence, Code Generation, Machine Learning, Model Interpretability, Ethical AI.

https://doi.org/10.63282/3117-5481/AIJCST-V2I6P102

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

15

receive semantic relationships in domains, and are pretrained on computer programs, natural language documentation, and
scientific literature on large and multifaceted datasets, establishing them as AI models, including GPT, Codex, and AlphaCode.
Using such pretraining, GFMs may produce high-quality code snippets, automatic code generation, can recommend improvements
to algorithms, and even can help in debugging or optimization of a computational process. Besides, they can generalize across
tasks and programming languages and thus make them versatile aides in regular and even sophisticated software engineering
settings. On top of the code generation, GFMs can also provide support to other more high-level reasoning, like problem-solving in

algorithmic problems, symbolic computation, and scientific modeling, bringing together human knowledge and automated
intelligence. Such completeness of automation, reason, and flexibility makes GFMs an effective tool to complement traditional
development processes, make development processes faster, improve code quality, and allow developers to concentrate on
innovation and creative solutions. In this way, GFMs not only symbolize a new technology, but also a strategic facilitator of the
future of smart software engineering, indicating that this approach can transform the landscape of computational development
and speed up the process of implementing AI-based software engineering practices.

1.2. Foundation Models

Foundation models are very big, trained AI systems that are trained over massive data on numerous areas. They act as a
platform (or base) to numerous activities of language, image recognition, and content production, which are later downstream.
They are adaptable because of transfer learning - the capability to specialize these general models to specific uses using

comparatively small data.

Figure 1. Foundation Models

 Language Models (BERT, GPT-3, T5): Language models are basis models that are used to comprehend, produce, and

manipulate human language. BERT (Bidirectional Encoder Representations transformers) is more concerned with
contextual interpretation in text, and generative pre-trained transformer 3 (GPT-3) makes better handicraft at

eventuating consistency and creative language responses. T5 (Text-to-Text Transfer Transformer) transforms any NLP
problem to a text-to-text version thereby allowing it to be widely applicable to a variety of applications, such as
translation, summarization and question-answering.

 Computer Vision Models (ResNet, EfficientNet, YOLO): Computer vision models allow computers to meanfully interpret
visual information in the world. ResNet (Residual Network) proposed the use of skip connections as an efficient way to
train extremely deep neural networks. EfficientNet is a model scaling that can be used to attain high accuracy at a
reduced resource and, conversely, YOLO (You Only Look Once) is a real-time object recognizer, able to find many objects
in pictures and videos in real-time.

 Generative Models (DALL, GANs, VAEs): Generative models are intended to produce novel data similar to what it was
trained on — e.g. to produce realistic images, music, or text. DALL·E creates images based on textual commentaries and
combines creativity and language interpretation. GANs (Generative Adversarial Networks) oppose two neural networks

to generate real data that are synthetic and VAEs (Variational Autoencoders) are able to learn efficient data
representations and produce variable and high-quality samples.

1.3. Transforming Software Development and Computational Reasoning

The development of Generative Foundation Models (GFMs) has brought a paradigm shift to software development and
computational reasoning and transformed the way complex tasks are handled and solved. Historically, software development has
been very human intensive, as software developers used to write or modify code manually, debug, and repeat through several

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

16

testing processes to verify the correctness and efficiency of the software. GFMs, e.g. GPT, Codex, and AlphaCode, challenge this
paradigm by automating large parts of the coding process, writing working code by prompting natural language input, and
helping to solve algorithmic problems. Such automation does not only speed up the development timelines, but also minimizes the
chances of human error so that the developers can devote more time on more advanced design, optimization as well as innovative
problem solving. Computational reasoning In computational reasoning, GFMs can be directly used to accomplish tasks which used
to be restricted to special symbolic reasoning engines or people. They are able to solve algorithmic but not human problems, they

are able to create mathematical counterarguments and they are able to do logical reasoning and assist in scientific modeling,
relying upon the patterns observed in the huge and diverse stories.

These models can be used to ensure a smooth transition between the description of conceptual problems and their

implementation by combining the understanding of natural language and structured code, and this is what makes the difference
between these models. The ability is also present in multi-step reasoning, generation of hypotheses and optimization of
computational processes, which underscores the breadth of application of the GFMs to areas that need intelligent and accurate
answers. The implications of GFMs go beyond being individualistic and affect the overall software development cycle. These
models help with requirements analysis and code generation all the way to testing, deployment, and continuous feedback, making
the process more efficient, accurate and scalable. They also enhance teamwork by the generation of readable and sustaining codes
that enhance the transfer of knowledge among teams. Consequently, there is no incremental approach towards automation

through GFM it is a paradigm shift, merging the power of reasoning, learning and generation, ultimately making software
engineering and computational problem solving a smarter, more adaptive and efficient one.

2. Literature Survey
2.1. Evolution of Generative Models

The development of generative models indicates the transition of old-school statistical methods to a new neural network

architecture that can learn intricate data distribution. The first approaches, including Gaussian mixture models and hidden
Markov models, heavily depended on handcrafted features and were scaled and expressive in a limited manner. With the launch of
Variational Autoencoders (VAEs), a major advancement was achieved as it now became possible to model high-dimensional data
(images and text) in a probabilistic way efficiently. The next contributor to the field was the Generative Adversarial Networks
(GANs), which implemented the game theoretic approach, whereby a generator network is used to generate data, and a
discriminator network is used to consider whether the generated data is authentic or not, leading to extremely realistic results.
Recently, newer generative modeling architectures based on Transformers have transformed earlier models especially in
sequential and structured data. The self-attention process in the centerpiece of Transformers enables the model to assist long-
range connections and contextual connections in data, thus any intelligent method, such as code generation, natural language
understanding, and reasoning, is highly effective. Their parallelization and scaling nature has helped them to train on large-scale
datasets, which has contributed immensely in terms of performance and diversity.

2.2. Generative Models in Software Development

Generative foundation models (GFMs) have potential to be transformative to software development, providing novel
methods to automate and augment software development. The tools discussed above like OpenAI Codex, and DeepMind AlphaCode
represent that potential, as they have reached the performance of almost a real human expert in writing code and solving
algorithms. Codex is capable of generating code snippets based on natural language prompts, and helps software developers to
complete their code faster, minimize repetitive and repetitive activities, and scale higher. AlphaCode, however, is competitive
program oriented and is able to address complicated algorithmic problems that one is normally competent in problem solving. In
addition to code generation, GFMs have been used in the automated bug detection and repair, code refactoring and the creation of
documentation that improves the readability of the code. Studies show that the models have substantial benefits of shortening the
development period but also assist developers in ensuring quality codes. Table 1 further reminds us of some of the interesting uses

of GFMs in software engineering highlighting their real-world effect on a variety of activities.

2.3. Generative Models in Computational Reasoning
In addition to software development, generative models have been useful in aspects where computational reasoning of high

quality is needed. Such models are finding more and more use in areas like mathematical theorem proving, logical inferences and
scientific simulations that require the process of reasoning with symbolic and structured information. Hypothesis generation,
logical relationships as well as space exploration of the solution are more effectively carried out in GFM as compared to the
conventional approaches to computation. As an example, models can generate step-by-step derivations of equations in symbolic
mathematics or propose new ways of approaching a problem. GFMs can be used in scientific simulation to model a complex
system, predict, and optimise computational workflows. Their capacity to extrapolate the patterns on large scale data make them

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

17

useful in decision making where exhaustive search or rule-of-thumb approaches cannot be effectively used. Thus, the models are
closing the divide between the generative AI and the high-level elements of reasoning, which makes them more applicable to the
simple content generation or code generation.

2.4. Challenges and Limitations

Generative foundation models have a variety of serious challenges, even though they are promising, that need to be

overcome to be successfully and ethically deployed. Ethics and bias: Since models tend to learn the biases of their training sets
accidentally and later produce discriminatory results, they can contribute to discrimination or even strengthen the existing
stereotypes in the society. Another critical matter is security vulnerability especially in the production code generation where
models can give out an insecure or exploitable code that could give rise to a software risk. One of the biggest drawbacks is that to
train and run large-scale GFMs, enormous amounts of computational resources, energy, and specialized hardware are required,
and thus are less affordable by organization size. Lastly, interpretability is also not straightforward; it is usually hard to know how
a GFM came to a specific conclusion or prediction, and it may limit trust and responsibility, especially in the fields with high
stakes, such as healthcare or finance. These drawbacks need to be resolved so that the use of GFMs can be safe, equitable, as well
as feasible on a large scale.

3. Methodology
3.1. Model Selection and Training

Figure 2. Model Selection and Training

3.1.1. Transformer Encoder-Decoder:

Transformer encoder-decoder structure is an effective sequence-to-sequence architecture, so it is a good choice to use it in
code generation. Usually in this arrangement, this input sequence (e.g., a natural language description of a programming task) is
processed by the encoder which in turn produces a contextual representation. This representation is then transformed in the
decoder to generate the output sequence in the form of the code snippet. This is enabled by self-attention mechanism in both the
encoder and the decoder that ensures the model captures the long-range dependencies and relationships among the tokens that
are important in producing syntactically correct and semantically meaningful code. Parallel computation is also aided by this
architecture, which makes it more effective in training large datasets of code and text.

3.1.2. Autoregressive Models

This type of models is called autoregressive transformer and they produce one token at a time and predict the next token
using all the previously generated tokens. Within the code generation framework, this enables the model to develop the code in a
stepwise fashion, and to guarantee that there is logical progression and consistency throughout the code (in variable names,
function calls and control structures). The model trains to learn sophisticated sequences in code sequences, which allows it to be
used on problems like filling in partial snippets of code, propose edits, or write a whole new function when prompted to do so. The
autoregressive training makes use of big code corpora and serves as beneficial in making the model spans across the language,
framework as well as coding styles in programming.

3.2. Dataset Preparation

Preparation of the data set is a crucial process of training the foundation models based on generative concepts that perform
generation of codes and reasoning. In this paper, data is obtained by searching a wide variety of open-source code libraries,

databases, and websites, such as GitHub, GitLab, competitive programming public datasets like Codeforces and LeetCode. These
repositories present an enriching jumble of software languages, way of coded designs, and issues-solving strategies so that the
model is able to acquire generalizable glimpses among the multiple coded paradigms. Besides the source code, corpora of

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

18

documentation, including API documentation, software manuals, and technical blogs are added to increase the model to make
sense of natural language descriptions, and how they are mapped to functional code. This heterogeneous data should be processed
by a preprocessing pipeline to be standardized and structured. Lastly, tokenization is used to split the code and textual data into
significant analyses such as keywords, operators, identifiers and literals, yet the syntactic data is retained. In the case of
programming languages, programming languages use abstract syntax tree (AST) extraction to better represent hierarchical code
structure so that the model can learn about how the various elements in the codes interact with each other, instead of just

consuming linear token sequences.

AST-based representations assist in representing more complicated logic in a program, like in nested looping, conditional

statements, and function calls, without which it is impossible to produce syntactically and semantically sound code. Normalization
is used to decrease variability and enhance model generalization. Comments, formatting and names of variables are standardized
whereas programming structures are transformed into canonical form to minimize noise in the training data.
Duplications/Redundancy Duplicate or redundant code snippets have been eliminated, and incomplete or incorrect samples have
been filtered to guarantee the quality of datasets. Also, natural language descriptions to code samples are cleaned to eliminate
discrepancies and make them consistent with related code samples. This methodologically prepared dataset provides high quality,
structured, and variegated training data to the model, which is a cornerstone to the learning of sound code generation and
reasoning skills across various programming languages and problem-solving.

3.3. Experimental Setup

Figure 3. Experimental Setup

3.3.1. Code Correctness
One of the most welcome metrics of measuring generative models in software development is code correctness. It measures

that the code generated is able to execute successfully and that the results of the execution are expected to be given
correspondingly to the test cases. In the experimental process, all created code snippets are automatically tested on a set of
standard inputs to ensure their accuracy of functionality. This analysis aids in making sure that not only the model generates
syntactically correct code, but also that it is logically constituted and that it acts in a manner desired in the intended program. To
measure the level of correctness in various programming tasks, metrics of pass rate, compilation success and error frequency are
recorded.

3.3.2. Execution Time

The time taken to execute analyzes how well the generated code performs with regards to runtime. Whereas correctness

can guarantee a functional accuracy, execution time determines how fast the code can finish tasks which is important in
applications that demand a real time or large scale running. The benchmarks are also implemented on standard hardware setups
during the experiments, and the average time it takes to execute the code is measured. Most models that generate optimized or
efficient code sequences are regarded to be best in the sense of computation performance and as such, the need to generate not
just correct answers but also those which are realistic and scalable.

3.3.3. Computational Efficiency

Computational efficiency emphasizes resource consumption of the generative model per se, such as memory, processing
power and inference time. This measure is significant during the implementation of GFMs in the real world, because the large
scale models may be resource consuming and costly to execute. In experimentation, the use of GPUs/CPUs, the highest amount of

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

19

memory used, and the speed in which inferences are made are observed as the code is created or logic is solved. Both cloud-based
and edge computing applications favour using efficient models that exhibit high performance and relatively low resource
overhead.

3.3.4. Reasoning Accuracy

Accuracy in reasoning tests the capability of the model to think and compute complex computational problems and not just

simple code generation. It is a measure of the problem capabilities of the model to understand problem statements, to make use of
logical principles, and to generate accurate answers in such areas as algorithms design, symbolic reasoning, and inferring various
mathematical problems. The type of task undertaken in experiments is often organized problem-solving, in which the solutions
generated using them are compared with correct solutions that are established. An increase in the accuracy of the reasoning
implies that the model is able to extrapolate the patterns it learned and be effectively used to new problem-related scenarios,
which shows that it inherently has more insight into code semantics as well as computational logic.

3.4. Integration in Software Development Lifecycle

Figure 4. Integration in Software Development Lifecycle

 Requirements: Integration of generative foundation models (GFMs) commences at the specification stage that

requires requirements to be gathered in the form of project requirements, user requirements, and functional
requirements. GFMs may help in translating the high-level requirements to structured prompts or formal
specifications to make sure that the desired functionality is well transferred. The models are able to facilitate a gap in
understanding the natural language description that ensures that stakeholder expectations and technical
implementation are set by giving the automated code generation an initial blueprint. One of the advantages of this
step is to minimize the ambiguities and provide quick validation of functional requirements.

 Code Generation: During the code generation stage, there is the generation of code snipers, functions, or even full-
fledged modules. The models have been used to create syntactically correct and semantically meaningful code in
various programming languages by making use of transformer-based architectures. The process of development is
faster with this automation, repetition in the development code is minimized and more time can be spent by the
developers in the higher level design and solving problems. It is also possible to refine or customize generated code

with prompt interactions to help specific tasks within the coding environment, allowing a much more interactive and
productive coding process.

 Testing: After generation of the code, it is subjected to strong testing to ascertain its correctness, dependability and
adhering to the functional requirements. GFMs can help to automatically produce test cases or unit tests that
represent edge cases, possible errors and performance scenarios. Continuous testing is used to find logical defects or
runtime errors or unexpected effects and quickly repeat and polish the code. Incorporation of automated testing in
this phase will make the solutions generated correct and sound.

 Deployment: Code is released into production, once it has been tested successfully. The GFMs may help in the
creation of deployment scripts, configuration files, or continuous integration/continuous deployment (CI/CD) pipes
to automate the release process. This integration minimizes human error during deployment processes, and speeds

up delivery process and also ensures effective and consistent deployment of applications across environments.
 Feedback Loop: Feedback loop is used to complete the lifecycle by gathering the information on runtime

performances, user feedbacks and the error reports of the deployed applications. GFMs are also capable of examining
this response and giving suggestions on how to improve, optimise or fix bugs and this cycle of continuous learning
and improvement goes on. This cyclic methodology is necessary to guarantee that the code, and the model model

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

20

itself, are refined as time passes, resulting in a better quality of software, a more streamlined development
methodology, and models which are more in touch with the domain specific demands of the organization.

3.5. Risk Mitigation Strategies

Figure 5. Risk Mitigation Strategies

 Bias Mitigation: Discrimination Generative foundation models (G) can produce discriminatory or misrepresentative work,

particularly when conditioned on biased datasets. The way out of this risk lies in making sure that the datasets used are
representative and varied and across a broad span of problem domain, programming style and backgrounds of the
developer. Also, the training or fine-tuning can be subject to fairness constraints to decrease bias of the models towards
specific patterns, language, or codes. Frequent review based on bias detection indicators should be used to adjust the
model outputs to be fair and inclusive to various scenarios.

 Security Checks: The vulnerability of generated code is that the generated code can create security problems in the
production settings unless it is well vetted. The tools which are used to identify the possible flaws include automated
static and dynamic code analysis and detect the possibility of using a buffer overflow, SQL injections, or insecure API

usage. The former is known as the static analysis that studies the structure and syntax of code with already known
security patterns whereas the latter is referred to as the dynamic analysis that tries the code in the context of simulated
conditions. These checks can be incorporated into the generation pipeline by developers allowing them to identify and
mitigate security threats before they can be deployed and the resulting software generated is functional and more secure.

 Resource Optimization: GFMs based on large transformers can be computationally intensive and therefore can be
restricted in accessibility and use. Model quantization, pruning, and distributed training are resource optimization
techniques that result in a smaller memory footprint, fewer computations, but do not dramatically decrease performance.
The concept of model quantization transforms parameters into lower-precision forms, neuron or layer pruning
eliminates redundant elements, and distributed training can be performed when many GPUs or nodes can be used
simultaneously. These techniques enhance scalability, reduce operational expenses, and deployment is possible across the
resource-constrained environment.

 Interpretability Tools: Making sense out of how a model comes up with its outputs is vital to trust, debugging and
improvement. Visualization, e.g. attention maps, aid in watching what the model focuses on as it generates code. Decision
rationale methods give rationales as to why a token was chosen, and dependencies or logical reasoning processes
followed by the model. These interpretability tools allow developers to view the model behavior, verify output and
understand where a failure is likely to occur, and so the code generation process is one which can be understood and held
responsible.

4. Results and Discussion
4.1. Code Generation Performance

Table 1. Code Generation Performance

Model Correctness Execution Time Efficiency
Codex 88% 80% 89%

AlphaCode 84% 67% 96%

GPT-4 80% 83% 78%

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

21

Figure 6. Graph representing Code Generation Performance

 Correctness: Correctness is the test of the functional correctness of the generated code, i.e. the frequency with which the

code actually runs and yields the desired output. As it can be indicated, the experimental data reveal that Codex is most
likely to be right (88 per cent), thus showing a good performance in decoding the prompts and producing syntactically
and logically correct code. AlphaCode and GPT-4 score 84 and 80, respectively, which means that they can either produce
functional code, but with occasional deviation or errors in a more complex task. High correctness plays an important role
in ensuring that the model can be reliable in helping the developers code in real life experiences.

 Execution Time: Execution time helps to determine how fast the generated code can perform tasks. The computational
efficiency and code optimization leading to 80, 67, and 83 percent relative to the fastest model are seen in, respectively,
Codex, AlphaCode, and GPT-4. Reduction in time taken to execute the programs is especially essential to applications that
demand real-time operation or high capacity data. These findings indicate that GPT-4 uses a little optimization of the
code to increase speed, and AlphaCode code, though functional, can have more computational overhead.

 Efficiency: Efficiency is used to evaluate the computing effort needed to create and execute code scaled against the best

process model. AlphaCode is most efficient with efficiency of 96 which means there is good utilization of system
resources when performing the activity. Codex has 89%, GPT-4 has 78% with more resources being used compared to
how much the model produces. Models running efficiently are useful to be deployed in the resource-constrained
environment with a benefit that they are cheaper to run and can be scaled to increase without affecting the performance.

4.2. Computational Reasoning Accuracy

Computational reasoning Computational reasoning is a notable feature of generative foundation models (GFMs), which can
be used to address complex symbolic, mathematical, and logic problems with significant levels of accuracy. In experimental
assessments, the maximum level of accuracy is 78% in symbolic reasoning tests, which underscores the fact that the GFM is
suitable not only to generate the code but also to solve the problems in a structured manner. These activities frequently include
several stages, pattern recognition, logic and sequencing of reasoning to reach out to the right solution. As an example, the models

are to produce evidences, solve algorithmic puzzles, and use symbolic formulations, all of which demand syntactic knowledge and
semantic inferences. These reasoning patterns can be internalized by the training process of the GFMs, and their high accuracy
testifies to the fact that as big datasets of code and problem-solving examples are used large-scale algorithms are able to
internalize the patterns. The performance is aided with the underlying transformer architectures. The model is able to detect
dependencies between tokens that are far apart through the mechanism of self-attention which is important so as to ensure
consistency in the process of multi-step reasoning. The models are enabled by autoregressive and encoder-decoder versions to
produce intermediate steps sequentially with references to the previous context and in the process duplicate human-like
approaches to solving problems.

In addition, GFM enjoys the benefits of being able to fine-tune to domain-specific data sets of mathematical theorems,

algorithm problems, and logic problems, which increases its generalizability to manifold problem types. Though the performance

is great, the reasoning accuracy is never 100 percent with the error mostly occurring due to the ambiguity in the statement of the
problems, insufficient knowledge of the context or inability to sustain the long-range dependencies of very complex problems.

0%

20%

40%

60%

80%

100%

120%

Correctness Execution Time Efficiency

Codex

AlphaCode

GPT-4

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

22

However, 78 percent accuracy proves that GFMs can do things that traditionally have been the province of symbolic reasoning
mechanisms and human experts. These findings highlight the prospect of GM to supplement computational reasoning in areas like
automated proof checking, scientific modeling and algorithm research to offer efficiency and scalability to problem solving
capability of complicated problems.

4.3. Discussion of Challenges

4.3.1. Ethical Considerations
The ethical issue in the implementation of generative foundation models is an important difficulty because the use of such

models can create biased or unfair results unintentionally since the model is trained on the basis of bias in training data. As an
example, the code suggestions can tend to be biased toward specific styles, programming frameworks, or practices, which do not
represent the best practices in general, and instead represent the demographics of the dataset. The only way of reducing these
risks is through continuous monitoring and evaluation such as fairness audit and also bias detection tests. Ethical principles and
limitations in the process of model training and fine-tuning can be utilized to guarantee that the outputs of the model are relevant
to the varying needs of users, as well as comply with fair expectations among different programming communities.

4.3.2. Security Risks

The other important issue with the use of GFMs to generate codes is security threats. The generated code may unwillingly

include vulnerabilities in the form of injection, poor use of APIs, or logic flaws that may be used in the end product. To mitigate
this, there must be strict validation measures in place such as automated dynamic and static analysis, penetration testing and
reviewing of codes. The inclusion of these security checks in the deployment pipeline will guarantee that the code is not only
functional but is also hardened against the possible attacks, and thus a reduction of the possibility of inoculating critical software
vulnerabilities is achieved.

4.3.3. Resource Constraints

An operational issue related to training and deployment of large-scale generative models is the resource constraints. GFMs
implemented using transformers typically demand significant computational power, memory and storage, which not only may not
be feasibly available in small sized organizations or environments with constrained resources but also may not be efficiently
implemented. The best infrastructure is optimized infrastructure (such as model quantization, pruning, and distributed computing

strategies) to save on operational cost and latency without compromising on performance. Scalable deployment is a result of
efficient management of resources, and this means organizations can enjoy the advantages of GFMs without the prohibitive cost of
computation.

5. Conclusion
GFMs are also a revolutionary change to software development, as well as in computational reasoning and implementation

of AI, donning a radical revolution in the application of artificial intelligence. These systems, especially transformer-based systems,
have proven to have exceptional effectiveness in producing quality code on natural language prompts, solving intricate algorithmic
and symbolic problem-solving problems, and supporting software developers at various phases of the software creation cycle.
Using massive amounts of data consisting of a wide range of programming languages, coding paradigms and documentation, the
GFMs have the capability to be able to learn patterns and associations which can guide them to generate syntactically sound,
semantically sound and efficient code. This does not only make it faster to develop but also it prevents the cognitive overload that
developers have to deal with since they can now be able to work on problems of higher orders, design systems and innovate.

In addition to code generation, GFMs are also highly performing in computational reasoning problems, including

mathematical theorems, symbols manipulation, and inference problems. Their capability of establishing long-range dependencies
and the multi-step reasoning ability is corresponding to the qualities of their self-attention mechanism and sequence modeling,

similar to those found in human problem solving. This flexibility makes GFMs a useful tool to fields where both form and
substance reasoning such as scientific simulations, algorithm research and automation debugging or code optimization are needed.
The incorporation of these models with software development processes, such as requirement analysis and code generation, and
real-world software development processes, such as testing, deployment, and feedback makes these models even more productive,
consistent, and scalable.

Nevertheless, there are challenges that are presented in the implementation of GFMs. Ethical issues, like the risk of biased

deliverables need thorough observation and exclusion to guarantee fairness and inclusivity of the generated solutions. Other
security risks of generated code would require heavy validation such as static and dynamic analysis to ensure that no
vulnerabilities creep into the production systems. Besides, computationally intensive large-scale GFMs require the optimized

* B. Subashini et al. [2020] The Role of Generative Foundation Models in Transforming Software Development
and Computational Reasoning

23

infrastructure, as the techniques such as model quantization, pruning, and distributed computing facilitate efficient and
sustainable work. Without fully overcoming these challenges, responsible adoption and long-term reliability are impossible.

Going forward, interpretability of models should be the focus of the future research in order to improve trust and
transparency, domain-conditioning in order to achieve high performance across specialized applications, and sustainable
computational approaches to save on energy consumption and operating costs. These fields are in their development stages and as

such, it is expected that the integration of GFMs within AI-based software and computational intelligence will become even more
vital. Generally speaking, the current evolution and adoption of GFMs are a paradigm shift, allowing to approach code generation
as well as solving complex problems in a smarter, more automated and scalable and establishing it as the foundation of the next
generation of AI systems.

References
[1] Eom, S. B. “A Survey of Operational Expert Systems in Business (1980–1993).” Interfaces, Vol. 26, No. 5, 1996, pp. 50-70.
[2] Sacerdoti, E. D. “A Survey of Expert System Projects.” Presented at Software Development ’89, San Francisco, 1989.
[3] Jiang, Juyong; Wang, Fan; Shen, Jiasi; Kim, Sungju; Kim, Sunghun. “A Survey on Large Language Models for Code Generation.” J. ACM, Vol.

37, No. 4, Aug 2018.
[4] Sacerdoti, E. D. “A Survey of Expert System Projects.” Proceedings of Software Development ’89, San Francisco, 1989.
[5] Conrad, F. G. “Using Expert Systems to Model and Improve Survey Classification Processes.” U.S. Bureau of Labor Statistics Research Paper

ST960070, 1996.
[6] Pang, X., & Werbos, P. “Neural Network Design for J-Function Approximation in Dynamic Programming.” arXiv preprint, 1998.
[7] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. “Learning Representations by Back-propagating Errors.” Nature, Vol. 323, No. 6088, 1986,

pp. 533-536. (classic though outside strict 1980-2000 but near)
[8] Luger, G. F. “Artificial Intelligence: Structures and Strategies for Complex Problem Solving.” 2nd ed., Addison-Wesley, 1998. (textbook on AI

approaches including rule-based and neural nets)
[9] Gulwani, S., Polozov, A., & Singh, R. “Program Synthesis.” Foundations and Trends® in Programming Languages, Vol. 4, Nos. 1–2, 2017, pp.

1-119.
[10] Mou, L., Men, R., Li, G., Zhang, L., & Jin, Z. “On End-to-End Program Generation from User Intention by Deep Neural Networks.” arXiv

preprint arXiv:1510.07211, 2015.
[11] Anand, S., Burke, E. K., Chen, T. Y., Clark, J. A., Cohen, M. J., Grieskamp, W., Harman, M., & McMinn, P. “An Orchestrated Survey of

Methodologies for Automated Software Test Case Generation.” Journal of Systems and Software, Vol. 86, 2013, pp. 1978-2001.
[12] Wylie, C. “The History of Neural Networks and AI: Part III.” Open Data Science blog, 2018.
[13] “Grammatical Evolution: Neural Network Synthesis Using Cellular Encoding and Genetic Algorithm.” Proceedings of the 1994 Genetic

Programming Conference. (early work on program synthesis via evolutionary methods)
[14] Motsinger-Reif, A. A., & Ritchie, M. D. “Neural Networks for Genetic Epidemiology: Past, Present, and Future.” BioData Mining, Vol. 1, 2008,

Article 3

	Original Article
	The Role of Generative Foundation Models in Transforming Software Development and Computational Reasoning
	1.2. Foundation Models
	Foundation models are very big, trained AI systems that are trained over massive data on numerous areas. They act as a platform (or base) to numerous activities of language, image recognition, and content production, which are later downstream. They a...
	Figure 1. Foundation Models
	 Language Models (BERT, GPT-3, T5): Language models are basis models that are used to comprehend, produce, and manipulate human language. BERT (Bidirectional Encoder Representations transformers) is more concerned with contextual interpretation in te...
	 Computer Vision Models (ResNet, EfficientNet, YOLO): Computer vision models allow computers to meanfully interpret visual information in the world. ResNet (Residual Network) proposed the use of skip connections as an efficient way to train extremely...
	 Generative Models (DALL, GANs, VAEs): Generative models are intended to produce novel data similar to what it was trained on — e.g. to produce realistic images, music, or text. DALL E creates images based on textual commentaries and combines creativ...
	1.3. Transforming Software Development and Computational Reasoning
	The development of Generative Foundation Models (GFMs) has brought a paradigm shift to software development and computational reasoning and transformed the way complex tasks are handled and solved. Historically, software development has been very huma...
	These models can be used to ensure a smooth transition between the description of conceptual problems and their implementation by combining the understanding of natural language and structured code, and this is what makes the difference between these ...
	2. Literature Survey
	2.1. Evolution of Generative Models
	2.2. Generative Models in Software Development
	2.3. Generative Models in Computational Reasoning
	3.1. Model Selection and Training
	Figure 2. Model Selection and Training
	4.1. Code Generation Performance
	Table 1. Code Generation Performance
	Figure 6. Graph representing Code Generation Performance
	4.2. Computational Reasoning Accuracy

