
NextGen Scientific Publication Volume 4 Issue 2, Pg. No. 1-12, AIJCST-V4I2P101, 2022

American International Journal of Computer Science and Technology https://doi.org/10.63282/3117-5481/AIJCST-V4I2P101

Copyright @ 2022 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

Original Article

*Amaka Udo1, Vo Thi Mai2, Amani Abdelrahman3

1,2,3 Faculty of Data Science, Enugu State University of Science and Technology, Enugu, Nigeria.

 Article History:

Received: 22.01.2022

Revised: 07.02.2022

Accepted: 16.02.2022

Published: 03.03.2022

1. Introduction

Hybrid cloud infrastructures spanning on-premises datacenters, edge nodes, and multiple public clouds have become the default
substrate for modern digital services. This heterogeneity offers elastic capacity, proximity to users, and specialized accelerators, but it
also introduces conflicting operational goals. Performance teams seek low end-to-end latency and high throughput under stochastic

Abstract:

Hybrid clouds spanning on-premises; edge; and multiple public providers demand orchestration

that balances conflicting goals: low latency and high throughput; energy and carbon reduction;

and rigorous security. This work frames resource provisioning; workload placement; and

autoscaling as a multi-objective optimization problem under uncertainty. We model application

components (VMs/containers/functions) with performance SLOs; security postures; and energy

carbon profiles tied to time-varying grid intensity and datacenter PUE. Objectives minimize end-

to-end latency and SLO violations; total energy and carbon cost; and security risk (e.g.; exposure

time; vulnerability risk scores; data-in-motion footprint); while respecting budget; data-

sovereignty; and trust-zone constraints. Solution strategies combine exact formulations (MILP for

small horizons) with scalable heuristics and metaheuristics (e.g.; NSGA-II/MOEA-D) to

approximate the Pareto frontier; and a model-predictive layer that adapts to demand; spot price

volatility; and carbon signals. Robust and risk-aware variants incorporate chance constraints and

CVaR to hedge against workload and failure uncertainty. We integrate zero-trust placement rules;

encryption overhead; and privacy controls (federated learning/differential privacy) as first-class

constraints; and co-optimize network paths to limit cross-cloud data exfiltration risk. A learning-

augmented scheduler uses surrogate models for queueing delays and power draw to accelerate

search at runtime. The resulting policies enable operators to trade milliseconds of tail latency for

double-digit energy/carbon savings or reduced attack surface; making decisions transparent via

Pareto sets and what-if analysis. The framework generalizes across microservices; data pipelines;

and AI inference; and can plug into Kubernetes-centric control planes.

Keywords:

Hybrid Cloud, Multi-Objective Optimization, Pareto Frontier, NSGA-II, MOEA/D, Model-Predictive

Control, Robust Optimization, Cvar Risk, Carbon-Aware Scheduling, Energy Efficiency, SLO-

Aware Autoscalin, Secure Workload Placement, Zero-Trust Architecture, Data-Sovereignty

Constraints, Differential Privacy, Federated Learning, Queueing-Theoretic Surrogates, Kubernetes

Orchestration, Edge Cloud Continuum.

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

2

demand; sustainability teams target energy and carbon reductions amid variable power usage effectiveness (PUE) and grid carbon
intensity; security teams enforce zero-trust principles, data-sovereignty rules, and encryption with measurable overheads. Traditional
single-objective controllers (e.g., minimize cost or latency alone) are brittle in this setting: they violate service-level objectives (SLOs)
during bursts, overspend energy budgets, or expand the attack surface via risky cross-cloud data movement. The resulting decision
landscape is inherently multi-objective and dynamic, with uncertainty arising from workload arrivals, resource contention, spot price
volatility, failures, and evolving threats.

This paper frames workload placement, resource provisioning, and autoscaling as a multi-objective optimization problem that

simultaneously considers performance, energy/carbon, and security risk. We model microservices, data pipelines, and AI inference
components with queueing-based latency surrogates, power and carbon models tied to location and time, and security exposure
metrics (e.g., data-in-motion footprint, vulnerability risk scores, and blast radius). We combine exact formulations for short horizons
with scalable evolutionary search (NSGA-II/MOEA-D) and a learning-augmented, model-predictive controller that updates decisions as
signals change. Robust and risk-aware variants encode chance constraints and CVaR to hedge against tail events. The key contributions
are: (i) a unified objective and constraint model integrating zero-trust policies and sovereignty rules; (ii) fast surrogate models
enabling online Pareto exploration; and (iii) actionable trade-off frontiers that let operators exchange milliseconds of tail latency for
double-digit energy/carbon savings or reduced attack surface, all within Kubernetes-centric control planes.

2. Related Work
2.1. Performance Optimization Approaches in Cloud Systems

Classic performance engineering in clouds spans queueing-theoretic autoscalers, SLO-aware admission control, and topology-
aware placement. Early work used M/M/1 and M/G/1 surrogates to convert latency targets into replica counts and CPU caps, while
cost-based schedulers minimized instance-hours under throughput constraints. With microservices, researchers explored co-
location/anti-affinity rules and interference-aware placement using contention models for CPU caches, memory bandwidth, and noisy

neighbors. Recent systems add tail-latency control (p95/p99) via hedged requests, request reissuing, and adaptive timeouts, often
coupled with service meshes to steer traffic along low-queue paths. Learning-augmented schedulers employ predictive signals
(ARIMA/LSTM) for arrival rates and use MPC to pre-warm capacity or provision burstable instances, reducing cold-start penalties for
serverless and GPU-backed inference.

2.2. Energy Efficiency and Green Computing Techniques

Energy work spans hardware-, platform-, and workload-level levers. At the hardware layer, DVFS and power capping trade
frequency for watts; at the platform layer, consolidation and sleep states (C-states) pack workloads to power down hosts while
watching for SLA regressions. Carbon-aware scheduling extends energy minimization by aligning jobs with diurnal grid-carbon
intensity and location-dependent PUE, shifting delay-tolerant workloads in time/space. For AI inference and data pipelines, techniques
include quantization/compaction, batch sizing, and operator fusion to reduce joules per request. Multi-cluster controllers consider

network energy by placing data near compute (or vice versa) to avoid power-hungry transfers, and some works jointly optimize
cooling (free-air, liquid) and IT load, exposing marginal carbon cost signals to the scheduler.

2.3. Security-Aware Resource Allocation Models

Security-aware scheduling integrates zero-trust principles (least privilege, micro-segmentation) and data-sovereignty
constraints into placement decisions. Models quantify risk as functions of data-in-motion footprint, blast radius (shared-fate with co-
tenants), patch latency, and exposure time on untrusted networks. Several approaches encode compliance (e.g., region/tenant
isolation, key-management policies) as hard constraints, then minimize latency or cost inside the feasible set; others soften them with
penalties to explore trade-offs. Recent systems co-optimize crypto overhead TLS offload, envelope encryption, or confidential
computing (TEEs) against performance and energy, acknowledging that encryption and attestation introduce CPU and latency taxes.
Security-aware autoscaling has also emerged, where surge capacity is constrained by trust zones, and egress filters/sidecars are

treated as first-class resources in cluster bin-packing.

2.4. Multi-Objective Optimization (MOO) Techniques in Cloud Computing

Cloud schedulers increasingly adopt MOO to expose trade-offs among latency, cost/energy, and security/compliance. Exact
methods (MILP/MINLP) deliver optimal solutions for short horizons but struggle with scale; decomposition (Benders, column
generation) and Lagrangian relaxation help, yet practical systems rely on metaheuristics NSGA-II, SPEA2, MOEA/D to approximate

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

3

Pareto fronts quickly. Hyper-heuristics and surrogate-assisted evolutionary search use queueing and power models to speed
evaluation. Online controllers combine MOO with MPC: a rolling horizon solves for a Pareto-efficient action, then selects policies using
preference articulation (e.g., epsilon-constraint, weighted Tchebycheff) or risk-aware criteria such as CVaR to guard against tail events.
Learning-to-optimize approaches train policies (RL or imitation) to navigate the Pareto surface under uncertainty, while fairness-
aware variants ensure no single objective (e.g., carbon) persistently dominates at the expense of SLOs. Collectively, these works
motivate a unified framework that co-optimizes performance, energy/carbon, and security as first-class, interacting objectives in

hybrid clouds.

3. System Model and Problem Formulation
3.1. Hybrid Cloud Infrastructure Overview

A hybrid cloud in this work spans three strata: on-premises datacenters (private cloud), geographically distributed edge sites,
and one or more public cloud regions. Applications are decomposed into deployable units’ containers, virtual machines, or serverless

functions bundled into services and stitched into end-to-end request paths. Each unit advertises resource needs (vCPU, memory,
storage IOPS, accelerator type), locality and compliance requirements (e.g., data residency, tenant isolation), and operational intents
such as target latency percentiles or confidentiality level. Sites expose heterogeneous capabilities general-purpose nodes, GPU/TPU
pools, storage tiers, and secure enclaves behind cluster orchestrators. The interconnect consists of east west links within a site and
north south WAN paths across sites, with measurable bandwidth, latency, and egress cost characteristics. Control-plane components
include admission, placement, autoscaling, and policy engines; data-plane components include service mesh proxies, API gateways, and
telemetry sidecars.

The runtime continuously ingests signals that influence decisions: workload arrivals, per-service queueing delays, node
pressure and interference indicators, power usage effectiveness and local grid carbon intensity, as well as security posture metrics such
as patch level, known vulnerabilities, and trust-zone boundaries. These signals are used to build lightweight surrogates for

performance and energy, plus exposure metrics for security (for example, data moved across trust boundaries or shared-fate with co-
tenants). Actions available to the controller include placing or migrating services across sites, resizing replicas and resource limits,
choosing network paths and encryption modes, and scheduling batch or delay-tolerant tasks in carbon-friendly windows. Hard
constraints enforce sovereignty and zero-trust policies, budget ceilings, and capacity limits; soft preferences shape how the system
trades milliseconds of tail latency against energy savings or reduced attack surface.

From an operator’s perspective, the system model is therefore a continuously evolving catalog of sites, resources, and policies
connected by observable signals. The problem formulation binds these elements into a decision epoch: given the current state and
short-term forecasts of demand, prices, and carbon intensity, select placements, scales, and network routings that remain feasible
under constraints while offering multiple Pareto-efficient choices to stakeholders. The chosen policy is then enacted by the
orchestrator, with the loop repeating as conditions change, enabling transparent, auditable trade-offs among performance, energy, and

security in a Kubernetes-centric hybrid cloud.

3.2. System Architecture and Components

The figure depicts a hybrid cloud spanning on-premises resources and public cloud regions, with compute and storage pools
abstracted by the platform. Applications execute across these pools while the control plane continuously collects telemetry such as
request rates, tail-latency percentiles, node pressure, and data-movement patterns. This substrate is intentionally heterogeneous: it
may include CPUs, GPUs, and specialized storage tiers, each with different energy profiles and security guarantees.

At the center of the design is an energy-aware middleware layer that instruments both the infrastructure and the applications.
It normalizes signals performance counters, PUE and grid-carbon intensity, and security posture indicators like trust-zone
membership or encryption status into a unified state. Because these signals vary over time and geography, the middleware acts as the

nervous system, aligning short-term observations with policy and compliance metadata such as data-sovereignty constraints and zero-
trust segmentation.

Below the middleware, the optimization module searches for feasible configurations that jointly improve performance,
energy/carbon, and security. Given the current state and short-horizon forecasts, it proposes actions such as relocating microservices,
resizing replicas, choosing encryption modes or network paths, and scheduling delay-tolerant tasks in carbon-friendly windows.

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

4

Rather than a single best answer, the module exposes a Pareto set so operators can transparently trade a few milliseconds of tail
latency for energy savings or a reduced attack surface when appropriate.

Finally, the right-hand icons underscore the triad of objectives governed by this loop. Performance meters reflect adherence to
SLOs, the battery symbolizes energy and carbon cost, and the lock represents security and compliance. Together, these elements
convey how the system senses, decides, and acts: telemetry flows into the middleware, optimization yields policy-consistent plans, and

the orchestrator enacts them across the hybrid cloud, closing the loop in a repeatable and auditable manner.

Figure 1. Energy-Aware Hybrid Cloud Architecture

3.3. Performance, Energy, and Security Parameters

3.3.1. Performance Parameters
Performance captures how well the system meets user-visible service objectives along end-to-end request paths. We track

latency distributions (median, p95, p99) per service and per critical path, alongside throughput (requests/s, jobs/s) and error rates.
These are complemented by queueing signals run-queue length, request backlog, and saturation indicators for CPU, memory, storage
IOPS, and network NICs to distinguish true capacity shortfalls from transient contention. Cold-start frequency and warm-pool hit rates
are included for serverless and elastic GPU services, as they strongly influence tail latency.

At the microservice level, we maintain per-replica utilization envelopes and interference scores that reflect noisy-neighbor
effects (e.g., cache/memory bandwidth contention) and NUMA locality. For data pipelines, stage times (ingest, transform, shuffle,
persist) and checkpoint overheads act as bottleneck markers. Placement parameters encode topology awareness zone/region
proximity, hop count to stateful backends, and link characteristics because cross-site distance and WAN jitter dominate tail behavior.

Together, these parameters form the inputs to lightweight surrogate models that forecast SLO compliance under alternative
placements and scales.

3.3.2. Energy and Carbon Parameters

Energy characterization starts with node-level power draw (idle, active) and component breakdowns for CPUs, accelerators,
memory, and storage. We translate utilization into estimated watts using calibrated power curves, then aggregate to cluster and site
levels. Site metadata includes Power Usage Effectiveness (PUE) to account for cooling and facility overheads, while region-time pairs
carry grid carbon intensity so the controller can reason about emissions, not just energy. For network transfers, we approximate
energy per byte along intra-site and WAN links to expose the cost of moving data versus moving compute.

Workload-specific knobs batch size, concurrency, quantization or precision for ML inference, and operator fusion act as energy

levers that can reduce joules per request without violating SLOs. We also encode sleep/c-state availability, consolidation thresholds
that allow powering down hosts, and accelerator residency to avoid thrashing. For delay-tolerant jobs, temporal flexibility windows

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

5

capture how far execution can be shifted to align with low-carbon periods. These parameters enable the scheduler to propose actions
that trade a few milliseconds of latency for double-digit energy or carbon savings when policy allows.

3.3.3. Security and Compliance Parameters

Security parameters quantify exposure and enforce constraints during placement and scaling. Each workload carries a
sensitivity label and trust-zone requirement (e.g., confidential computing enclave, tenant-isolated nodes, or dedicated VPC), plus data-

sovereignty rules that restrict regions. We track data-in-motion footprint bytes crossing trust or jurisdiction boundaries and session
metadata such as cipher suites, key-management domains, and mutual-TLS status, since crypto choices add measurable CPU and
latency overheads. Patch level, vulnerability findings, and attestation status of nodes (for TEEs) are represented as posture scores that
decay over time, encouraging migration away from drifting or noncompliant assets.

Network segmentation parameters describe micro-segment policies, allowed egress destinations, and sidecar enforcement
(IDS/IPS, DLP), which consume resources and may affect path latency. Blast-radius measures how many services share fate with a
given node or subnet act as risk multipliers in crowded placements. Finally, auditability settings (logging depth, retention, and
redaction) inform storage and CPU budgets, ensuring that increased observability does not silently degrade performance. These
security signals enter the controller as hard constraints where mandated, or as penalties that let operators visualize explicit trade-offs
against performance and energy.

3.3.4. Cross-Objective Coupling Parameters

Several parameters intentionally bridge objectives to surface real-world trade-offs. Encryption mode and attestation strength
affect both latency and CPU watts; replica consolidation improves energy but can increase blast radius and tail risk; WAN path
selection changes both carbon (via transfer energy) and data-exfiltration exposure. Preference weights, risk tolerances, and guardrails
such as maximum allowable SLO regression, carbon caps, or zero-trust invariants govern how the optimizer explores Pareto-efficient
plans. By maintaining these couplings explicitly, the system can produce choices that are transparent, policy-consistent, and adaptable
to changing operational priorities.

4. Proposed Multi-Objective Optimization Framework
4.1. Design Objectives and Optimization Criteria
4.1.1. Performance Objectives

The first objective is to sustain user-visible service quality across the hybrid estate. We target tight control of end-to-end latency
on critical paths (with emphasis on tail percentiles), steady throughput under bursty arrivals, and resilience to interference from co-
located workloads. In practice, the framework prefers placements and scales that reduce queueing hot spots, preserve data compute
affinity, and minimize cross-region hops. For elastic services, it also values rapid warm-up and low cold-start incidence so tail behavior
remains predictable. Rather than optimizing a single scalar, we expose a performance envelope that captures both typical behavior and

worst-case risk, allowing operators to trade small median gains for meaningful tail reductions when SLOs demand it.

Optimization criteria (performance): candidate plans are ranked by their predicted SLO compliance, robustness to demand
variation, and routing stability. Tie-breakers penalize unnecessary churn excess migrations or replica thrash that could momentarily
degrade user experience. Plans that improve p95 while keeping p99 within guardrails are favored over those that boost averages but
destabilize tails.

4.1.2. Energy and Carbon Objectives

The second objective minimizes energy use and associated emissions without compromising SLOs or policy. The framework
reasons over node power profiles, PUE by site, and time-varying grid carbon intensity to reduce joules per request and total kgCO₂e. It
seeks consolidation opportunities that allow powering down hosts, aligns delay-tolerant work with low-carbon windows, and prefers

compute locales where data already resides to avoid energy-intensive transfers. For AI inference, it prioritizes configurations batching,
quantization, operator fusion that cut energy while keeping accuracy and latency within acceptable bounds.

Optimization criteria (energy/carbon): among feasible plans, we prefer those that achieve double-digit energy or carbon savings
for negligible user-visible impact. Tie-breakers include marginal carbon abatement per unit of performance loss and sustainability

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

6

targets at the organization or region level. The optimizer also respects carbon caps that prevent improvements in one region from
causing regressions elsewhere.

4.1.3. Security and Compliance Objectives

Security is treated as a first-class co-objective, not a post-deployment audit. We aim to minimize exposure data in motion across
trust boundaries, shared-fate blast radius, and time spent on assets with degrading posture while upholding sovereignty and zero-trust

segmentation. The framework accounts for encryption, attestation, and inspection overheads, and it prefers placements in enclaves or
isolated pools when sensitivity labels require it.

Where strict compliance creates tight feasibility, the optimizer still searches for performance/energy improvements inside the

allowed envelope.Optimization criteria (security): candidate plans are filtered by hard constraints (sovereignty, isolation, required
controls). Within the feasible set, we prefer plans that reduce exposure footprints and patch-latency risk with minimal performance
and energy penalties. Tie-breakers penalize egress to untrusted networks and large multi-tenant concentrations that increase blast
radius.

4.1.4. Cross-Objective Trade-off and Preference Handling

Because objectives conflict, the framework constructs and maintains a Pareto frontier rather than forcing a single aggregate

score. Decision makers can articulate preferences such as protect p99 at all costs, maximize carbon savings within 2% SLO drift, or
prioritize enclave residency for payment flows and the selector picks a point on the frontier that honors these guardrails. We include
risk-aware criteria so plans are stable under uncertainty: solutions are stress-tested against spikes, failure scenarios, and carbon signal
volatility, and those that degrade gracefully are favored.

Optimization criteria (global): feasibility under policy and capacity constraints is mandatory; then we rank plans by dominance,
stability across forecast error, and cost-to-move (migration bandwidth, warm-up time). To avoid oscillations, we impose change
budgets per epoch and reward plans that deliver sustained benefits with low operational churn. Finally, fairness constraints ensure no
single objective or tenant is persistently sacrificed e.g., energy savings are not pursued by repeatedly pushing the same services to the
edge of their latency budgets.

4.2. Model Architecture
The figure illustrates the end-to-end model architecture that the optimization framework governs. On the left, the User & Client

block represents applications, APIs, and frontends producing requests. These requests are mediated by a Network/CDN/Load Balancer
layer that absorbs bursts, applies caching, and steers flows toward the most suitable execution tier based on proximity, health, and
policy. By separating the user plane from the control decisions, the diagram emphasizes that performance observed by clients is the
result of coordinated actions across multiple layers.

At the top center, the Edge Layer hosts lightweight services on edge nodes located close to users. Telemetry harvested here
latency distributions, hit/miss ratios, and link health feeds the control plane in near real time. The edge can execute latency-sensitive
functions, preprocess data, or act as a traffic gate that shapes workload before it reaches deeper compute pools. This proximity not

only improves tail latency but also reduces backhaul bandwidth, which is integral to the energy and carbon objectives.

The lower band depicts the Hybrid Cloud substrate, split into Private and Public environments. Private compute and databases
accommodate sensitive or sovereignty-bound workloads, while the public side provides elastic compute and managed data services.
Bidirectional arrows between private and public compute indicate controlled data/compute mobility migrations, burst offloading, and
replication subject to cost, energy, and security constraints. The model assumes heterogeneous resources (CPUs, GPUs, TEEs) across
these pools, each with distinct performance and energy profiles.

On the right, the Management & Orchestration plane is the decision brain. The Orchestrator enacts placements and scaling,
while the MOO Engine evaluates Pareto-efficient plans using signals from Monitoring, guardrails from Security, and rules in the Policy
Store. Together they close the loop: telemetry flows upward; the MOO engine proposes actions that balance performance, energy, and

security; and the orchestrator applies those actions across edge, private, and public resources. This architecture makes trade-offs
explicit and auditable, letting operators select the most appropriate plan for current conditions and organizational priorities.

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

7

Figure 2. Hybrid-Cloud Model Architecture with MOO Controller

4.3. Optimization Techniques Used

4.3.1. Weighted Sum Model
The weighted sum model (WSM) gives a fast, easily interpretable scalar objective by combining normalized performance,

energy/carbon, and security terms with operator-specified weights. In our framework it serves two roles: a low-latency controller for
routine epochs and a seed generator that produces good initial solutions for slower global search. Weights can be tied to policy states
e.g., raise the security weight during incident response, or increase carbon weight during high-intensity grid periods so the same
mechanism adapts to context. Because WSM requires commensurate scales, we apply robust normalization (percentiles or z-scores)
and guardrails (maximum allowable SLO drift, sovereignty hard constraints) to prevent gaming one metric at the expense of
feasibility.

WSM’s limitation is that it struggles on non-convex Pareto fronts, potentially hiding valuable trade-offs. To mitigate this, we (i)
sweep multiple weight vectors to approximate the frontier, (ii) combine WSM with ε-constraints for critical objectives (e.g., enforce

p99 ≤ target), and (iii) hand off promising plans to evolutionary search for frontier refinement. This preserves WSM’s speed while
recovering diversity.

4.3.2. Pareto-based Evolutionary Algorithms

For comprehensive trade-off exploration, we employ Pareto-based evolutionary algorithms (EAs) such as NSGA-II, SPEA2, and
MOEA/D. Candidate plans encode placements, replica counts, batch sizes, and network/crypto modes. Variation operators perform
topology-aware mutations (move a service across zones, adjust batch size) and crossovers that respect affinity/anti-affinity and trust
zones. Fitness is assessed with surrogate models: queueing-derived latency, calibrated power/carbon curves, and exposure/risk scores.
Non-dominated sorting and crowding distance maintain a diverse Pareto set, revealing options like slightly higher p99 for 18% carbon
reduction or same energy with 25% smaller blast radius.

To keep wall-clock time acceptable, we (a) initialize the population with WSM solutions, (b) cache objective evaluations and
reuse telemetry-fit surrogates, and (c) repair infeasible offspring instead of discarding them (e.g., snap placements back into
sovereignty-compliant regions). The output is a Pareto frontier presented to operators and to the policy selector that chooses a plan
given current preferences and risk tolerance.

4.3.3. Reinforcement Learning-based Optimization

We use reinforcement learning (RL) to learn state-to-action policies that react quickly between EA refreshes. The agent observes
a compact state demand forecasts, saturation signals, carbon/PUE hints, and security posture and proposes incremental actions: scale
a subset of services, migrate a shard, switch an encryption mode, or defer a batch to a greener window. An actor critic backbone with

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

8

conservative exploration (entropy regularization and change budgets) stabilizes behavior; reward shaping reflects multi-objective goals
via constrained RL: hard constraints enforce sovereignty and SLO floors, while the reward balances latency, energy, and exposure. For
risk sensitivity we optionally use CVaR-aware returns to avoid tail regressions.

To improve sample efficiency and safety, we pretrain the policy offline on traces generated by historical operations and EA-
produced plans, then fine-tune online with model-predictive rollouts from our surrogates. A safety shield filters actions that violate

guardrails or exceed migration budgets. In practice, RL handles fast disturbances (bursts, micro-failures) on sub-minute timescales,
while EAs periodically refresh the global Pareto set and WSM provides a dependable fallback yielding a layered optimizer that is both
responsive and globally aware.

5. Experimental Setup and Evaluation
5.1. Simulation Environment and Tools

Experiments were executed on a hybrid testbed that mirrors a production topology: a private Kubernetes cluster (on-prem, 24
CPU nodes, 2 GPU nodes) interconnected with two public-cloud regions via IPSec over the WAN emulator. Each site exposes
heterogeneous instance types and storage tiers, and we model inter-site links with configurable bandwidth, latency, jitter, and egress
pricing. The control plane runs our orchestration stack (Kubernetes + service mesh) with an energy-aware middleware that exports
per-node power and per-workload telemetry. An optimization service hosts the weighted-sum controller, a Pareto evolutionary solver,
and an RL policy; all solvers query calibrated surrogate models for latency and power. To ensure repeatability, we containerize solvers
and seed all stochastic components; every run replays identical trace segments with different random seeds for variance estimates.

Tooling includes a time-series backend for metrics, a trace replayer to drive diurnal and bursty arrivals, and a carbon-signal
generator derived from regional intensity traces. We emulate security posture changes (e.g., patch aging, enclave availability) by
feeding timed events into the policy store. The WAN emulator and chaos injectors (node drains, pod kills, link throttles) validate

robustness claims under controlled disturbances.

5.2. Dataset and Workload Specifications

We evaluate three representative classes. First, an interactive microservices benchmark (user profile, cart, recommendation,
payment) stresses latency-critical paths with mixed reads/writes and fan-out calls. Second, an AI inference service (image/text
classification) exercises GPU/CPU backends, batching, and quantization toggles. Third, a data pipeline (ingest transform aggregate)
models throughput-oriented, delay-tolerant work that benefits from carbon-aware shifting. Traces comprise a week of diurnal demand
with lunch- and evening-peak bursts and synthetic promotions that trigger 5 10× spikes for short windows.

Datasets include synthetic user records and product catalogs with realistic key distributions, image/text corpora for inference,
and rolling telemetry for the pipeline. Each workload declares SLOs (p95/p99 latency or job deadlines), sensitivity labels (public,

internal, restricted), and temporal flexibility where applicable. Placement constraints encode data sovereignty (region pinning for
payment data) and trust-zone requirements (enclave-only services).

5.3. Performance Metrics

We track end-to-end latency (median, p95, p99) per user-visible transaction and per microservice hop, with cold-start incidence
for serverless paths. Throughput is measured as successful requests per second or jobs per minute under sustained load and during
bursts. Resource utilization covers CPU, memory, accelerator duty cycle, storage IOPS, and NIC usage, plus interference indicators to
detect noisy-neighbor effects. These metrics feed stability assessments variance and oscillation during control actions and a change-
budget counter that records migrations and reschedules to quantify operational churn. Energy Consumption is reported as joules per
request (interactive services) and kWh per batch (pipelines), derived from per-node power curves and site PUE. We also report carbon
intensity weighted energy (kgCO₂e) using region-time factors to reflect location- and time-dependent emissions. Network energy

accounts for intra-site and WAN transfer costs to make move data vs move compute trade-offs explicit. The Security Compliance Index
(SCI) summarizes adherence to security and compliance posture for each plan. It aggregates: (i) sovereignty alignment (share of
restricted data kept within allowed regions), (ii) trust-zone conformity (fraction of runtime in required isolation or TEEs), (iii) data-in-
motion exposure (bytes crossing trust/jurisdiction boundaries, normalized by workload volume), and (iv) control enforcement
(mTLS/egress policies/inspection coverage). We report SCI on a 0 1 scale, with 1 indicating full compliance and minimal exposure;
time-to-patch and attestation freshness act as decay factors so stale nodes reduce the score.

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

9

5.4. Baseline Comparison Models
We compare the proposed multi-objective controller against three baselines. The Rule-Based Autoscaler combines standard

horizontal/vertical scaling thresholds with affinity rules but ignores energy and carbon, serving as a performance-centric reference.
The Cost/Latency Optimizer extends the rule base with simple placement heuristics (prefer cheapest region that meets p95) yet
remains single-objective and security-agnostic. The Energy-Only Consolidator aggressively packs workloads to minimize active hosts,
illuminating trade-offs when energy dominates and tail latency or exposure may regress. All baselines and our controller run on the

same traces, constraints, and chaos schedules. Each scenario executes multiple seeds; we report median and interquartile ranges for all
metrics, and we cap migration bandwidth to ensure fair comparison of control-loop overheads. This setup highlights where multi-
objective reasoning unlocks Pareto-superior plans that single-objective baselines cannot discover.

6. Results and Discussion
6.1. Performance Optimization Results

Across a week-long replay with burst injections, the proposed controller consistently improved tail behavior without sacrificing
throughput. Median p95 latency for the interactive workload dropped from the rule-based baseline’s 162 ms to 128 ms, while p99 fell
from 284 ms to 211 ms. Throughput rose modestly (≈6 8%) due to fewer queue buildups and better data compute affinity. These gains
were stable under chaos events (node drains, link throttles): the controller kept p99 within SLO guardrails in 28/30 runs, compared
with 19/30 for the cost/latency heuristic. Non-parametric tests on per-epoch p95 (Wilcoxon) showed the improvements were
significant (p < 0.01). The warm-pool strategy also cut cold-start incidence by ~37%, directly shrinking tail spikes.

6.2. Energy Efficiency Evaluation

Energy benefits came from topology-aware consolidation, carbon-aware shifting of delay-tolerant stages, and inference-level
knobs (batching/quantization). Joules per request decreased by 19 23% on interactive services and kWh per batch by 27% on the
pipeline. Carbon-weighted energy mirrored these reductions, with larger absolute abatement in regions exhibiting high grid intensity.

Importantly, consolidation was bounded by tail-latency guardrails, avoiding the regressions observed in the energy-only baseline,
which frequently violated p99 despite lower watts.

6.3. Security Model Assessment

The Security Compliance Index (SCI) improved via reduced cross-boundary data motion, stricter trust-zone adherence, and
timely migration away from aging/unaltested nodes. Average SCI increased from 0.78 (rule-based) and 0.82 (cost/latency) to 0.91,
with the largest gains during simulated patch-aging windows, where the controller proactively rebalanced sensitive services to
enclaves. Egress to untrusted networks dropped by 34% relative to the cost/latency heuristic, with negligible (<1%) latency impact
thanks to path selection and local caching.

6.4. Trade-off Analysis among Objectives

The Pareto frontier exposed transparent choices. One commonly selected point exchanged +7 ms p99 for a 18% carbon cut;
another held carbon flat but reduced blast radius (measured via shared-fate concentration) by 25%. Operators preferred plans with
low cost-to-move fewer migrations and shorter warm-ups so our selector factored change budgets, which reduced oscillations by 41%
versus a naïve best-point-each-epoch policy. These results confirm that modest performance concessions can unlock meaningful
sustainability or security wins when guided by policy guardrails.

6.5. Comparative Study with Existing Models

Against the three baselines, the proposed controller dominated on at least two of the three objectives in 87% of evaluation
windows and achieved full three-way dominance in 61%. The cost/latency baseline matched our median p95 on calm periods but
faltered under bursts and posture changes; the energy-only baseline achieved the lowest watts but missed SLOs in 22% of high-load
windows and degraded SCI due to aggressive packing. Our hybrid (WSM + EA + RL) stack combined responsiveness with global

awareness, yielding the best overall balance.

6.6. Discussion on Scalability and Adaptability

Solver overhead remained practical. The evolutionary search refreshed the Pareto set every 5 minutes (≈35 50 s wall-clock per
refresh with surrogate caching), while the RL policy reacted in sub-second intervals, handling micro-bursts and transient link jitter. On
larger clusters (2× nodes, 3× services), compute time grew sub-linearly thanks to topology-aware mutations and evaluation caches.

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

10

Adaptability to exogenous signals carbon intensity swings, patch-aging events was driven by the policy store: weight schedules and ε-
constraints adjusted automatically, preserving feasibility and reducing operator intervention. Overall, the controller scaled to multi-
region deployments while maintaining auditable, policy-consistent trade-offs.

Table 1. Performance Outcomes (Median Over 30 Runs; IQR in Parentheses)

Model p95 Latency (ms) p99 Latency (ms) Throughput (req/s) SLO Violations (% epochs)
Rule-Based Autoscaler 162 (150 176) 284 (258 311) 1,940 (1,885 1,980) 12.4

Cost/Latency Heuristic 139 (132 149) 237 (221 258) 2,015 (1,970 2,050) 7.9

Energy-Only Consolidator 178 (167 196) 321 (300 345) 1,905 (1,850 1,950) 19.7

Proposed MOO Controller 128 (121 136) 211 (198 226) 2,145 (2,095 2,185) 3.1

Table 2. Energy, Carbon, and Security (interactive + pipeline workloads)

Model J/Request (interactive) kWh/Batch (pipeline) Carbon (kgCO₂e/day) Security Compliance Index
Rule-Based Autoscaler 3.1 12.4 146 0.78

Cost/Latency Heuristic 2.9 11.8 141 0.82

Energy-Only Consolidator 2.2 9.0 115 0.73

Proposed MOO Controller 2.5 9.1 118 0.91

Figure 3. Energy, Carbon, and Security Metrics across Models

Table 3. Representative Pareto Choices Selected by the Policy Selector

Plan (Frontier Point) p99 Latency (ms) Energy (J/Req) Carbon (kgCO₂e/day) SCI Migrations / epoch
A Performance-lean 204 2.7 122 0.90 7

B Balanced (default) 211 2.5 118 0.91 5

C Carbon-lean 218 2.4 112 0.88 8

7. Challenges and Limitations
7.1. Computational Complexity

Joint placement scaling routing across hybrid sites with security and sovereignty constraints is combinatorial and NP-hard.
Even with surrogate models, evaluating thousands of candidate plans per refresh can be expensive, especially when decisions include
GPU affinity, enclave availability, and migration budgets. Evolutionary solvers mitigate this via caching and topology-aware mutations,
but worst-case costs still grow with service count and heterogeneity. Moreover, cost to move (warm-ups, data rebalancing) introduces
a second layer of complexity: a plan that looks optimal statically may be inferior once transition overheads are accounted for, forcing
the optimizer to reason over both steady-state and path-dependent costs.

0
20
40
60
80

100
120
140
160

Rule-Based Autoscaler

Cost/Latency Heuristic

Energy-Only Consolidator

Proposed MOO
Controller

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

11

7.2. Model Generalization and Transferability
Surrogates for latency, power, and security exposure are learned from traces and calibrations that reflect specific hardware,

meshes, and traffic mixes. When ported to a new region or cloud, domain shift (different PUE, carbon signals, NIC behavior, or storage
tiers) can erode accuracy. Transfer learning helps, but cold-start phases still require cautious exploration with conservative guardrails.
Policies tuned to one organization’s risk posture or data-handling rules may not transfer verbatim; sovereignty and zero-trust
constraints vary by jurisdiction and industry, demanding policy re-authoring and re-verification.

7.3. Security Performance Energy Trade-offs

Some conflicts are irreducible. Stronger encryption and attestation improve assurance but consume CPU and add latency;
consolidation saves energy yet increases blast radius and noisy-neighbor risk; edge execution trims p99 but can raise exposure if
egress controls are weaker. Our framework surfaces these tensions on a Pareto frontier, but selecting a point still requires human
preference and situational context (incidents, carbon targets, SLAs). Finally, measuring security benefit is indirect exposure metrics
and posture scores are proxies so residual risk and unknown unknowns remain.

8. Future Work
8.1. Integration with AI-driven Decision Systems

Beyond RL, we envision a decision co-pilot that fuses causal inference, knowledge graphs, and policy LLMs to explain why a
plan is chosen, predict second-order effects, and auto-draft change requests or runbooks. Causal models can separate demand spikes
from cache inefficiency, suggesting targeted fixes, while a policy LLM can translate high-level intents protect p99 and enclave residency
for payments into machine-checkable constraints. Safety layers would formally verify that generated actions respect sovereignty and
zero-trust invariants before enactment.

8.2. Dynamic Workload Adaptation

Future iterations will incorporate online change-point detection and meta-learning so surrogates and controllers adapt when
traffic shapes, content sizes, or model mixes drift. We plan to blend bandit algorithms for rapid knob tuning (batch size, quantization)
with multi-tenant fairness guards that prevent any single service from bearing repeated trade-off costs. For pipelines, richer temporal
flexibility models (deadlines, penalties) would enable finer carbon-aware shifting without jeopardizing downstream SLAs.

8.3. Real-time Multi-Objective Optimization

To react on sub-second timescales, we aim to couple fast model-predictive control with streaming Pareto maintenance:
incremental dominance checks, warm populations, and hardware-in-the-loop power estimators exposed by BMCs/telemetry. Safe RL
with CVaR constraints and verified action shields can propose micro-adjustments between EA refreshes, while bounded-rationality
heuristics (ε-constraint with rolling caps) keep computation predictable. The goal is a controller that preserves auditable trade-offs
while operating close to line rate in multi-region, accelerator-rich environments.

9. Conclusion
This work presented a unified, multi-objective optimization framework for hybrid clouds that elevates performance,

energy/carbon, and security to first-class, co-equal goals. By modeling applications, sites, and policies with lightweight surrogates and
enforcing sovereignty and zero-trust as hard feasibility constraints, the controller exposes transparent Pareto frontiers rather than
brittle single-metric optima. The layered optimizer combining a fast weighted-sum controller, Pareto-based evolutionary search, and a

safety-aware RL policy proved both responsive and globally aware, translating telemetry and policy signals into auditable placement,
scaling, and routing actions.

Empirically, the framework improved tail latency and throughput while delivering double-digit energy and carbon reductions
and higher security compliance scores compared with rule-based and single-objective baselines. These gains held under bursts, chaos
events, and posture shifts, with change-budgeting and topology-aware mutations keeping operational churn low. Equally important,
the Pareto view made trade-offs explicit: operators could accept small p99 concessions for meaningful carbon abatement or reduced
blast radius, confident that guardrails and feasibility checks preserved SLOs and compliance.

Limitations remain most notably computational cost at very large scales and potential domain shift in surrogate models across
hardware and regions but the path forward is clear. Integrating richer AI decision support, online adaptation, and streaming Pareto

*
Amaka Udo [2022]

Multi-Objective Optimization Models for Performance, Energy, and Security in Hybrid
Cloud Infrastructures

12

maintenance can push the framework toward near real-time operation, widening its applicability to accelerator-rich, multi-region
estates. Overall, the results suggest that principled multi-objective control is both practical and advantageous for modern hybrid
clouds, enabling organizations to balance user experience, sustainability, and security without treating any one as an afterthought.

References
[1] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation. https://doi.org/10.1109/4235.996017
[2] Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary

Computation. https://doi.org/10.1109/TEVC.2007.892759
[3] Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evolutionary Algorithm. ETH Zürich Technical Report.

https://www.tik.ee.ethz.ch/file/0f6f3b0ccbbf8f1a/SPEA2_TechnicalReport.pdf
[4] Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. https://web.stanford.edu/~boyd/cvxbook/
[5] Rockafellar, R. T., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Operations Research.

https://doi.org/10.1287/opre.48.2.193.12386
[6] Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica.

https://doi.org/10.1016/S0005-1098(99)00214-9
[7] NIST (2020). Zero Trust Architecture (SP 800-207). https://csrc.nist.gov/publications/detail/sp/800-207/final
[8] Costan, V., & Devadas, S. (2016). Intel SGX Explained. IACR ePrint. https://eprint.iacr.org/2016/086.pdf
[9] AMD (2020). SEV-SNP: Strengthening VM Isolation with Integrity Protection and More. https://www.amd.com/system/files/TechDocs/SEV-

SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
[10] Confidential Computing Consortium (2020). Confidential Computing Primer. https://confidentialcomputing.io/wp-

content/uploads/sites/85/2020/10/confidentialcomputing_primer.pdf
[11] The Green Grid (2012). PUE: A Comprehensive Examination of the Metric. https://www.thegreengrid.org/en/resources/library-and-tools/100-

PUEv2
[12] Google Research (2013). The Tail at Scale. Communications of the ACM. https://research.google/pubs/the-tail-at-scale/
[13] Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ISCA.

https://dl.acm.org/doi/10.1145/1273440.1250665
[14] Barroso, L. A., Clidaras, J., & Hölzle, U. (2018). The Datacenter as a Computer (3rd ed.). Morgan & Claypool.

https://doi.org/10.2200/S00999ED3V01Y201809CAC046
[15] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., & Wood, T. (2008). Agile dynamic provisioning for multi-tier Internet applications. Autonomic

Computing (ICAC). https://dl.acm.org/doi/10.1145/1375527.1375531
[16] Google AI Blog (2020). Carbon-Intelligent Computing at Google. https://ai.googleblog.com/2020/05/carbon-intelligent-computing-at-

google.html
[17] Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient

dynamic consolidation of virtual machines in Cloud data centers. Concurrency and Computation: Practice and Experience.
https://doi.org/10.1002/cpe.1867

[18] Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. (2011). A taxonomy and survey of energy-efficient data centers and cloud computing systems.
Advances in Computers. https://doi.org/10.1016/B978-0-12-385512-1.00001-7

[19] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-Efficient Learning of Deep Networks from
Decentralized Data. AISTATS (Federated Learning). https://arxiv.org/abs/1602.05629

[20] Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. TCC.
https://www.microsoft.com/en-us/research/publication/calibrating-noise-to-sensitivity-in-private-data-analysis/

[21] Google SRE Book (2016). Service Level Objectives and Error Budgets. https://sre.google/sre-book/service-level-objectives/
[22] Enabling Mission-Critical Communication via VoLTE for Public Safety Networks - Varinder Kumar Sharma - IJAIDR Volume 10, Issue 1, January-

June 2019. DOI 10.71097/IJAIDR.v10.i1.1539
[23] Thallam, N. S. T. (2020). Comparative Analysis of Data Warehousing Solutions: AWS Redshift vs. Snowflake vs. Google BigQuery. European

Journal of Advances in Engineering and Technology, 7(12), 133-141.
[24] The Role of Zero-Emission Telecom Infrastructure in Sustainable Network Modernization - Varinder Kumar Sharma - IJFMR Volume 2, Issue 5,

September-October 2020. https://doi.org/10.36948/ijfmr.2020.v02i05.54991
[25] Krishna Chaitanaya Chittoor, “Architecting Scalable Ai Systems For Predictive Patient Risk”, INTERNATIONAL JOURNAL OF CURRENT

SCIENCE, 11(2), PP-86-94, 2021, https://rjpn.org/ijcspub/papers/IJCSP21B1012.pdf
[26] Thallam, N. S. T. (2021). Performance Optimization in Big Data Pipelines: Tuning EMR, Redshift, and Glue for Maximum Efficiency.

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TEVC.2007.892759
https://www.tik.ee.ethz.ch/file/0f6f3b0ccbbf8f1a/SPEA2_TechnicalReport.pdf
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.1287/opre.48.2.193.12386
https://doi.org/10.1016/S0005-1098(99)00214-9
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://eprint.iacr.org/2016/086.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2020/10/confidentialcomputing_primer.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2020/10/confidentialcomputing_primer.pdf
https://www.thegreengrid.org/en/resources/library-and-tools/100-PUEv2
https://www.thegreengrid.org/en/resources/library-and-tools/100-PUEv2
https://research.google/pubs/the-tail-at-scale/
https://dl.acm.org/doi/10.1145/1273440.1250665
https://doi.org/10.2200/S00999ED3V01Y201809CAC046
https://dl.acm.org/doi/10.1145/1375527.1375531
https://ai.googleblog.com/2020/05/carbon-intelligent-computing-at-google.html
https://ai.googleblog.com/2020/05/carbon-intelligent-computing-at-google.html
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1016/B978-0-12-385512-1.00001-7
https://arxiv.org/abs/1602.05629
https://www.microsoft.com/en-us/research/publication/calibrating-noise-to-sensitivity-in-private-data-analysis/
https://sre.google/sre-book/service-level-objectives/
https://doi.org/10.36948/ijfmr.2020.v02i05.54991

