
NextGen Scientific Publication Volume 4 Issue 4, Pg. No. 14-22, AIJCST-V4I4P102, 2022

American International Journal of Computer Science and Technology https://doi.org/10.63282/3117-5481/AIJCST-V4I4P102

Copyright @ 2022 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

 Original Article

*Dr. Nattapong Srisai1, Dr. Kamonwan Rattanapong2

1,2 Faculty of Data Science, Prince of Songkla University, Hat Yai, Thailand.

 Article History:

Received: 29.05.2022

Revised: 13.06.2022

Accepted: 25.06.2022

Published: 12.07.2022

1. Introduction

Securing cloud workloads hinges on a precise answer to three questions: who can do what, on which resources. In Amazon Web
Services (AWS), Identity and Access Management (IAM) provides the primitives to express that answer through identity-based policies

attached to users, groups, and roles. These JSON policies enumerate allowed actions (e.g., s3:GetObject, ec2:StartInstances) against
target resources and can be conditioned by attributes such as tags, IP ranges, or authentication context. While the basic model appears
straightforward, real-world environments quickly introduce multiple, intersecting control layers resource-based policies, permission
boundaries, session policies from AWS STS, and organization-level Service Control Policies (SCPs). Understanding how these layers
interact especially the precedence of explicit denies over allows is essential to design least-privilege access that scales.

Abstract:

Amazon Web Services (AWS) Identity and Access Management (IAM) is the control plane for

who can do what on which resources. This paper clarifies how identity-based policies attached

to users, groups, and roles govern actions, and how AWS evaluates permissions by merging

multiple policy sources. We explain the evaluation sequence starting from an implicit deny,

layering identity-based allows, checking resource-based policies (where applicable), then

enforcing explicit denies, permission boundaries, session policies, and organization-level Service

Control Policies (SCPs). The discussion distinguishes identity-based from resource-based

authorization, highlights the role of AWS STS in issuing temporary credentials, and shows how

conditions (including tags for ABAC) shape least-privilege access at scale. We map common

verbs (List, Read, Write, Permissions management, Tagging) to service actions and illustrate

cross-account access with role assumption and external IDs. Operational guidance covers

guardrails and verification: designing minimal, scoped policies; using permission boundaries for

delegated administration; applying SCPs to constrain accounts; and validating with IAM Access

Analyzer, Access Advisor, and CloudTrail. We also address advanced topics MFA enforcement,

session tagging, and break-glass patterns and provide a practical troubleshooting flow for

AccessDenied errors. By unifying conceptual models with a step-by-step permissions flow,

readers can design predictable, auditable access, reduce blast radius, and accelerate safe delivery

on AWS.

Keywords:

AWS IAM, Identity-Based Policies, Resource-Based Policies, Actions And Permissions, Least

Privilege, Explicit Deny, Permission Boundaries, Session Policies.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

15

This paper frames IAM not merely as a set of documents but as a predictable evaluation flow. Every authorization request
begins with an implicit deny, is evaluated against identity-based allows, further constrained by permission boundaries and SCPs, and
finally vetoed by any explicit deny. We connect this flow to operational scenarios: cross-account access via role assumption; attribute-
based access control (ABAC) using tags to reduce policy sprawl; and enforcement mechanisms like MFA and session tagging. We also
emphasize the feedback loop between design and verification, leveraging IAM Access Analyzer to surface unintended access paths,
Access Advisor to trim unused permissions, and CloudTrail to audit decisions over time. By unifying these concepts, the introduction

positions readers to reason systematically about IAM, reduce blast radius, and create auditable, automation-friendly guardrails that
enable secure, high-velocity delivery on AWS.

2. Literature Review
2.1. Overview of Existing Access Control Mechanisms (RBAC, ABAC, PBAC)
2.1.1. Role-Based Access Control (RBAC)

RBAC grants permissions through roles that encapsulate job functions (e.g., S3-ReadOnly, EC2-Operator). It is easy to reason
about, audit, and delegate, which explains its ubiquity in enterprises. However, RBAC can suffer from role explosion as environments
scale and responsibilities overlap. In cloud settings, static role sets often lag behind fast-changing resource topologies, leading to over-
privilege (broad roles) or friction (too many roles).

2.1.2. Attribute-Based Access Control (ABAC)

ABAC evaluates policies against attributes of the principal, action, resource, and environment (e.g., Project=Alpha,
Owner=User123, SourceIP in CorpCIDR, MFAAuthenticated=true). This enables fine-grained, context-aware decisions and supports
scalable, policy once, reuse everywhere patterns: tag resources and let conditions enforce boundaries. The trade-off is policy
complexity: expressing and validating condition logic requires disciplined tagging, consistent identity attributes, and robust
testing/monitoring to avoid inadvertent access paths.

2.1.3. Policy-Based Access Control (PBAC)

PBAC emphasizes declarative, centrally governed policies expressed in a domain language (e.g., JSON policies, OPA/Rego,
XACML). It generalizes RBAC and ABAC by treating roles and attributes as inputs to a unified policy evaluation engine. PBAC shines in
multi-layered governance (org-wide rules + team-level controls + session scoping) and in automating guardrails, not gates. Its risk is
fragmented ownership: without clear precedence rules and tooling, overlapping policies can become opaque to operators.

2.2. Prior Research on IAM in Cloud Computing
Research on cloud IAM converges on five themes:

2.2.1. Least-Privilege Derivation

Studies show real deployments accumulate permission drift as teams add broad permissions to unblock work. Work in this
area proposes mining CloudTrail-like logs to derive permissions actually used, then generating reduced policies (policy mining / policy
trimming). Iterative approaches combine static analysis (inferring required actions from IaC/templates) with dynamic traces to avoid
regressions.

2.2.2. Formal Models and Verification

Building on ABAC/RBAC theory and languages such as XACML, researchers model cloud policies as decision graphs and apply
satisfiability checking to prove properties (e.g., no principal outside Team X can delete production buckets). Tools highlight
unintended access paths (via resource-based policies, trust relationships, or wildcard actions) and flag explicit deny conflicts. Recent
work explores explainable authorization producing human-readable proofs for why allowed/denied.

2.2.3. Cross-Account and Federated Access
Cloud-native organizations use short-lived credentials and role assumption across accounts/tenants. Research evaluates trust-

policy hygiene (e.g., external IDs, audience restrictions), session scoping (session policies, boundaries), and the impact of federation
(OIDC/SAML) on attack surface. Consensus favors ephemeral credentials with strong conditions (MFA/Device posture/Source
network) and minimal trust blasts.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

16

2.2.4. Attribute & Tag Governance
ABAC’s effectiveness hinges on high-quality attributes. Studies document the operational burden of tag completeness and

correctness and propose attribute registries, drift detection, and auto-remediation (e.g., prevent creation of untagged resources;
backfill tags via metadata sources).

2.2.5. Developer Experience & Safety Rails

Research highlights that IAM usability is security. Patterns include policy templates for common tasks, permission boundaries
for delegated administration, organization-level guardrails to prevent risky actions, and IDE/IaC feedback that validates policies pre-
deploy. Empirical results show these controls reduce over-privilege without slowing delivery when coupled with observability (access
advisors, analyzers) and clear exception handling.

2.3. Comparative Analysis with Other Cloud Providers (Azure AD, GCP IAM)
2.3.1. Identity Model and Scope

 AWS separates identity (IAM users/roles and external identities) from a flat account boundary, scaled by AWS Organizations.
Authorization attaches to identities (identity-based) and sometimes to resources (resource-based), with global explicit deny
precedence, permission boundaries, session policies, and Service Control Policies (SCPs) as governance layers.

 Azure centers on Microsoft Entra ID (Azure AD) for tenant identity, with Azure RBAC evaluated over a hierarchical resource

graph (Management Group, Subscription, Resource Group, Resource). Role assignments cascade down the hierarchy; Azure
Policy and (in many programs) deny assignments act as guardrails; Privileged Identity Management (PIM) provides just-in-
time elevation.

 GCP uses Cloud Identity/Google Workspace with a strict resource hierarchy (Organization, Folders, Projects, Resources). IAM
policies (bindings of members to roles) are inherited; Conditions enable ABAC-like context; Organization Policy and IAM Deny
(where used) constrain risky actions; Workload Identity Federation eliminates long-lived keys.

2.3.2. Policy Expression and Granularity

 AWS exposes fine-grained, action-and-ARN-scoped JSON policies with rich Condition keys and tag-based ABAC across many
services; resource-based policies are common (S3, KMS, SNS/SQS, etc.).

 Azure emphasizes role assignments to scopes; custom roles provide granularity, while role conditions (and Entra Conditional

Access at sign-in) add context.
 GCP promotes predefined and custom roles bound to principals; IAM Conditions (on request time, IP, resource attributes) and

CEL expressions offer powerful, readable context logic.

2.3.3. Guardrails and Deny Semantics

 AWS: explicit denies anywhere wins; SCPs cap the maximum permissions per account; permission boundaries constrain
delegated roles; session policies further shrink active privileges.

 Azure: Azure Policy (with deny effects) and deny assignments enforce preventative controls; PIM with approval/MFA
supports JIT access.

 GCP: Organization Policy and IAM Deny constrain actions irrespective of local allows; hierarchy inheritance simplifies broad

enforcement with clear exceptions at lower scopes.

2.3.4. Ephemeral Access and Federation

 AWS: STS AssumeRole and external identity providers (SAML/OIDC) issue short-lived credentials; session tags and MFA
conditions enable contextual least-privilege.

 Azure: Entra ID issues tokens for service principals and users; PIM and access reviews operationalize temporal least-privilege.
 GCP: Workload Identity Federation and Service Accounts with short-lived tokens avoid static keys; conditions and context-

aware access bolster ABAC.

2.3.5. Operational Tooling

 AWS: IAM Access Analyzer, Access Advisor, CloudTrail, and service-specific analyzers; widespread resource-based policy

linting.
 Azure: Azure AD Identity Governance, Access Reviews, Activity Logs, Defender for Cloud recommendations.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

17

 GCP: Policy Analyzer, Asset Inventory, Cloud Audit Logs, IAM Recommender for least-privilege.

3. AWS IAM Fundamentals
3.1. Principal Entities in IAM
3.1.1. Users

IAM users represent long-lived identities for people or workloads that need a persistent identity in a single AWS account. A user
can have a password for the AWS Management Console and access keys for programmatic access. Permissions are granted via identity-
based policies (AWS managed, customer managed, or inline) attached to the user or to groups the user belongs to. In mature setups,
users are often minimized or disabled for humans in favor of federation to reduce key sprawl. When users are necessary (e.g., for
service integrations that can’t federate), enforce MFA, rotate access keys, and scope permissions tightly with conditions (tags, source
IP, VPC endpoints).

3.1.2. Roles
IAM roles are identities with no long-term credentials. They are assumed to obtain temporary credentials from AWS STS. A role

has two policy sides: a permissions policy (what the role can do) and a trust policy (who may assume it). Roles enable cross-account
access, least-privilege automation, and human JIT elevation (e.g., AdminElevated-1h). Techniques such as external IDs for third-party
access, session tags for ABAC, and permission boundaries for delegated admin make roles the core primitive for secure scale.

3.1.3. Groups

IAM groups are collections of users that simplify permission management (attach a policy once, apply to all members). Groups
cannot be nested and cannot receive credentials; they merely convey policies to members. Typical patterns include groups per job
function (e.g., DataEngineer-RO, SRE-Prod-Access) and per environment tier (dev/test/prod), reducing duplication and drift in user-
attached policies.

3.1.4. Federated Identities

Federation lets identities from an external IdP (SAML/OIDC, corporate directory, or AWS IAM Identity Center) access AWS
without creating IAM users. The IdP authenticates the subject; AWS issues temporary role credentials mapped from the external
identity to one or more roles. Benefits include centralized lifecycle (hire/transfer/leave), strong auth (MFA/conditional access), and
attribute flow for ABAC (e.g., team=payments, costCenter=123) via session tags. For applications, Web Identity Federation (OIDC) and
Cognito provide token-to-role mappings that avoid static keys.

3.2. Authentication and Request Flow
3.2.1. How Authentication Works
Authentication depends on the access path:

 Console: A user or federated subject signs in (password or IdP). On success, they receive a session whose identity is either the
user or an assumed role.

 CLI/SDK: The client signs requests using Signature Version 4 (SigV4) with credentials sourced from environment variables,
profiles, or credential processes. Frequently, these credentials are STS-issued and auto-refreshed.

Every API call carries an identity context (principal ARN, session name, tags, MFA status, source IP/VPC, time). The

authorization engine then evaluates identity-based policies, plus resource-based policies (if present), and applies guardrails such as
permission boundaries, session policies, and SCPs with any explicit deny overriding allows. Successful evaluation yields a signed, time-
bounded action on the target resource; failures return Access Denied with a request ID traceable in CloudTrail.

3.2.2. Role of Temporary Credentials

Temporary credentials (access key ID, secret key, session token) are issued by AWS STS and expire after a short duration (minutes to
hours). They underpin secure, scalable access because they:

 Eliminate long-lived secrets: Nothing durable to steal or rotate; sessions die automatically.
 Enable JIT and least privilege: Choose a role per task; restrict duration and scope with session policies and permission

boundaries.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

18

 Carry rich context: Session tags (from IdP attributes or callers) drive ABAC; source identity links actions to the original user
even across role chains.

 Support cross-account access: Trust policies and external IDs safely grant third-party or platform teams access without
sharing keys.

4. IAM Policy Types and Structures
4.1. Identity-Based Policies

Identity-based policies are JSON documents you attach to IAM users, groups, or roles to declare what those principals are
allowed (or explicitly denied) to do. They enumerate Actions (service API operations) on specific Resources (ARNs), optionally
constrained by Conditions (time, network, tags, MFA, session tags, etc.). Because they travel with the principal, they’re the primary
tool for least-privilege design in single- and multi-account environments.

Every request starts with an implicit deny. Identity policies can introduce Allows, but these are still bounded by other layers:
permission boundaries on the principal, session policies (for temporary STS Sessions), and organization-level guardrails like Service
Control Policies (SCPs). At any layer, an explicit Deny overrides all Allows. In cross-account scenarios, an identity policy that allows an
action must still meet a trusting resource-based policy on the target, if the service uses them (e.g., S3, KMS).

4.2. Structuring Policies for Clarity and Safety

Effective policies are precise on Action and Resource. Prefer exact verbs (s3:GetObject, ec2:StartInstances) and scoped ARNs
over wildcards. Split statements by verb and resource type, give each a Sid, and keep list/describe permissions (which often require
"Resource": "*") separate from write or permissions-management actions. Use Conditions to encode business context MFA for
sensitive IAM operations, aws:SourceVpce to force private access, or tag comparisons for ABAC (e.g., principal’s Team tag must match
resource’s Team tag).

4.3. ABAC with Conditions and Tags

Attribute-Based Access Control (ABAC) turns identity-based policies into scalable templates. A single policy can authorize many
teams/projects by comparing principal tags (e.g., Project=Alpha) with resource tags (aws:ResourceTag/Project =
${aws:PrincipalTag/Project}). This reduces policy sprawl and aligns access with ownership. ABAC succeeds when tags are mandatory,
validated, and consistent; enforce tagging at creation time and monitor drift.

4.4. Users, Groups, and Roles: Attachment Patterns

Attach policies to groups for human users to avoid one-off, user-attached policies; groups model job functions (reader, operator,
analyst). Prefer roles (assumed with STS) for both humans (just-in-time elevation) and workloads (EC2, Lambda, containers). Limit
direct user attachments; if users exist at all, require MFA and short-lived sessions. For delegated administration, pair identity policies

with a permission boundary so creators cannot mint over-privileged roles.

4.5. Managing Change: Versioning, Review, and Verification

Treat policies as code: store customer-managed policies in version control, require reviews, and validate pre-merge with a
simulator or analyzer. After deployment, reconcile declared intent with observed use: CloudTrail and last accessed data reveal actions
never exercised prime candidates for removal. Periodically right-size policies, time-box exceptions, and document why sensitive
permissions exist.

4.6. Common Pitfalls and How to Avoid Them

Over-broad wildcards ("Action":"*", "Resource":"*") and permissive conditions are the quickest paths to unintended access.
Avoid NotAction/NotResource unless a positive list is truly impractical. Don’t rely solely on identity policies for cross-account access

confirm the target resource policy also trusts your principal. Finally, remember that some services require paired permissions (e.g., S3
needs ListBucket on the bucket and GetObject on objects). Designing with these nuances in mind keeps identity-based policies
predictable, auditable, and aligned with least privilege.

The complete journey of an AWS request and situates resource-based policies within that journey. On the left, a principal such

as an IAM user, role, federated user, or application authenticates and sends a signed request specifying actions (operations), target

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

19

resources, and request context. That request enters the authorization engine, which evaluates multiple policy sources. Identity-based
policies attached to the caller are considered, but the figure also highlights resource-based policies that live on the resource itself (for
example, an S3 bucket policy, a KMS key policy, or an SNS topic policy). These policies name a principal and can allow cross-account
access without creating identities in the target account. The middle band emphasizes that authorization is the combination of all
applicable policies and guardrails.

A resource policy may grant or deny access based on principals, accounts, or conditions such as IP, VPC endpoint, or tags. When
both identity- and resource-based policies apply, AWS merges their effects with the standard evaluation rules: start from implicit deny,
consider allows from any applicable policy, and let any explicit deny win. This matters for cross-account scenarios shown on the right
of the figure, where a user from Account B can successfully invoke actions on a resource in Account A only if Account A’s resource
policy explicitly trusts that external principal (or account) and the caller’s own identity policies permit the action. Finally, the lower
portion grounds the model in concrete services EC2, IAM, and S3 linking actions/operations (e.g., CreateBucket, RunInstances) to
resources (buckets, instances, users/roles). This reinforces why resource policies are powerful: they put the authorization decision
alongside the resource, enabling owners to publish access rules (including cross-account trust) that are enforced consistently by AWS
regardless of how the caller authenticated.

Figure 1. AWS Authorization Flow Showing How Identity and Resource-Based Policies Jointly Govern access, Including Cross-

Account Requests

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

20

5. Authorization and Permission Evaluation Flow
5.1. Request Evaluation Logic

Every AWS request begins with an implicit deny. AWS then gathers all applicable policies and evaluates them in a deterministic
order. First, it inspects identity-based policies attached to the caller (user, group, or role), applying any session policies that further
reduce the active privileges of a temporary session. Next, if the target service supports them, AWS evaluates resource-based policies
(e.g., S3 bucket, KMS key, SNS/SQS topic) that live with the resource and name trusted principals or accounts. Permission boundaries
if set on the caller cap the maximum permissions even when an identity policy allows more. At the account or org level, Service
Control Policies (SCPs) filter the effective permission set for principals in member accounts: if an action is outside the SCP allow list, it
is unexecutable regardless of identity or resource policies. Throughout this process, AWS checks conditions (MFA, tags, IPs, VPC
endpoints, time) to decide whether a given statement applies to the specific request context.

Conflict resolution is simple but strict: any explicit Deny overrides all Allows from any source. If no statement ultimately

produces an Allow that survives all guardrails, the result is Access Denied. This means you can safely layer controls from different
owners application teams provide identity policies, platform teams enforce permission boundaries, and security governs with SCPs
without ambiguity. In cross-account scenarios, two tests must pass: the caller’s own policies must allow the action on the target ARN,
and the resource’s policy must trust the caller (or its account); an explicit deny on either side will veto the request. Finally, AWS signs
the decision in CloudTrail, letting you trace exactly which principal, session tags, and policy sources led to the outcome.

5.2. Actions and Operations

From an authorization perspective, Console and API/CLI are equivalent. The AWS Console is a client that calls the same service
APIs your code would call; the difference is only how credentials are obtained (interactive sign-in/federation for Console vs SigV4-
signed programmatic requests for CLI/SDK). Therefore, designing least-privilege means granting the minimum API actions needed for
a workflow, regardless of how the user initiates them. Where services do not support resource-level permissions for certain

list/describe operations, you may see "Resource": "*", which is acceptable and expected.

Service-specific examples illustrate these nuances. In S3, reading objects typically requires two permissions: s3: ListBucket on
the bucket ARN to enumerate keys and s3: GetObject on the object ARNs (e.g., arn:aws:s3:::bucket/*). Cross-account access often
relies on a bucket resource policy that trusts an external role, plus identity policies on that role that allow GetObject; an explicit deny
on the bucket (e.g., for untagged objects) will block access even if the role allows it. In EC2, most actions are resource-scoped (e.g., ec2:
StartInstances on specific instance ARNs), but some capabilities are region- or account-wide (e.g., certain Describe* calls).

Conditions frequently anchor access to network context such as aws: SourceVpce to require private access via VPC endpoints.

For IAM itself, permissions management actions (e.g., iam: AttachRolePolicy, iam: CreateAccessKey) are sensitive and often protected
by MFA conditions, permission boundaries (so delegated admins cannot mint over-privileged roles), and SCPs that disallow wildcard

grants. Across all services, the same rule holds: enumerate the exact actions required, scope resources precisely, and use conditions to
bind access to business context (tags, identity attributes, time, and network), knowing that any explicit deny will decisively settle
conflicts.

6. Challenges and Best Practices
6.1. Policy Complexity and Misconfigurations

As environments grow, IAM policy graphs become hard to reason about: identity policies on users/roles, resource-based policies
on buckets and keys, permission boundaries, session policies, and organization-level SCPs all intersect. Small mistakes wildcards in
Action/Resource, overly broad Condition logic, or trusting entire accounts in resource policies create unintended access paths. Treat
policies as code: author customer-managed policies in your IaC (CloudFormation/Terraform/CDK), run pre-merge validation (policy
simulators, linters, Access Analyzer), and block deploys on high-risk patterns (e.g., iam:*, s3:* with "Resource":"*"). Standardize ABAC
via a minimal, enforced tag schema (e.g., Project, Environment, DataClass) and prevent drift with controls that block untagged
resources. Prefer explicit allow lists over NotAction/NotResource, and keep policies readable split by verb/resource, add Sids, and
encapsulate common needs in a small library of reviewed, reusable policies.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

21

6.2. Over-Privileged IAM Roles (Principle of Least Privilege)
Over-permissioning accumulates through just make it work exceptions. Counter it with short-lived, task-specific roles and JIT

elevation instead of permanent admin. Use permission boundaries for delegated administration so created roles cannot exceed a
defined ceiling, and cap accounts with SCPs to prohibit dangerous actions (e.g., disabling CloudTrail, detaching guardrail policies).
Continuously trim privileges using access analysis (e.g., Access Advisor usage data and log-mined recommendations) to remove actions
never invoked. Bind access to context with conditions MFA for permissions-management, aws: SourceVpce for private access, session

tags for ABAC so even broad roles are fenced by environment and identity attributes. Avoid long-lived access keys; favor federation ,
assume role with short session durations and distinct roles per workflow (read-only, operator, break-glass).

6.3. Policy Versioning and Auditing

Without strong provenance, you cannot explain who could do what, when, and why. Store every policy and trust policy in git
with semantic versioning and change control (reviews, owners, approvals). Embed policy tests (simulation against known scenarios)
and keep a changelog tied to tickets/risk assessments. At runtime, ensure comprehensive auditing: enable CloudTrail (and CloudTrail
Lake) across all regions, log to immutable, access-controlled buckets, and include source identity/session tags so role chains remain
attributable. Periodically reconcile declared intent (IaC) with observed reality (CloudTrail, Access Analyzer findings) and rotate
exceptions through time-boxed approvals. For compliance, generate periodic evidence packs: inventory of principals and policies,
SCP/boundary snapshots, last-used permissions, and analyzer reports. Automate revocation workflows for leavers and stale roles, and

implement break-glass procedures with separate credentials, MFA, tight monitoring, and post-use review.

7. Future Directions
7.1. AI/ML-Based Policy Analysis

As IAM estates grow into tens of thousands of principals and policies, static linting reaches its limits. Next-generation tools will
pair graph analytics with probabilistic models to reason over the full authorization graph trust relationships, resource policies, SCPs,

permission boundaries, and session context. Graph embeddings can surface structural anomalies (e.g., a role with permissions unlike
its peers), while sequence models trained on CloudTrail traces can learn behavioral baselines and flag unusual permission use (rare
actions, new cross-account paths, time/geo deviations). Large language models fine-tuned on policy corpora will increasingly power
why was this allowed/denied? explanations, generating human-readable proofs with links to the precise Statement.Sids involved. A
promising direction is counterfactual analysis: simulate minimal policy edits that would flip a decision (allow,deny or vice-versa) to
recommend precise fixes. The challenge is trust: models must be auditable and deterministic at the point of change approval, with
guardrails that prevent hallucinated actions and with clear provenance for every recommendation.

7.2. Automated Least-Privilege Enforcement

Manual right-sizing cannot keep pace with agile delivery. The future is closed-loop least privilege: define intent in IaC, observe
actual usage, and automatically propose or apply reductions. Safe automation will combine (1) policy mining from last-used and

runtime traces; (2) time-boxed elevation with auto-expiry; and (3) progressive enforcement, where recommendations begin as
monitor only, then move to shadow-deny (simulate denies), and finally to enforced policies after soak periods. Permission boundaries
and SCPs will act as safety nets, ensuring auto-generated policies cannot exceed organizational caps. For developers, least-privilege
becomes shift-left: IDE/CDK assistants synthesize fine-grained actions from code/IaC diffs and attach verifiable justifications that
compliance can review. Break-glass and exception paths will be codified with automated approvals, short session durations, and
mandatory post-use revocation. Success will be measured not only by smaller policies, but by fewer AccessDenied defects, stable
delivery velocity, and audit artifacts that show every change was proposed by data, tested in simulation, and applied with reversible,
version-controlled commits.

8. Conclusion
Effective security on AWS ultimately reduces to making authorization predictable, explainable, and auditable. By modeling IAM

as a deterministic evaluation flow implicit deny, specific allows from identity and resource policies, guardrails from permission
boundaries and SCPs, and a universal precedence for explicit deny teams can reason about who can do what, on which resources,
under which conditions with confidence. Distinguishing principal types (users, roles, federated identities), privileging temporary
credentials, and embracing ABAC through disciplined tagging allow access to scale with the business without policy sprawl.

*
Dr. Nattapong Srisai & Dr. Kamonwan Rattanapong [2019]

Securing AWS Resources with IAM: Identity-Based Policies, Actions, and Permissions
Flow

22

Operational excellence comes from treating policies as code: version-controlling customer-managed policies, validating them
pre-deploy, and continuously reconciling declared intent with CloudTrail reality. Over-privilege is addressed not by one-time
campaigns but by ongoing right-sizing short-lived, task-specific roles, permission boundaries for delegation, MFA and network
conditions for sensitive actions, and organization-level SCPs to cap risk. These practices shrink blast radius while preserving developer
velocity. Looking forward, AI-assisted analysis and closed-loop least-privilege promise to automate the dull yet dangerous parts of
authorization management. Graph-based reasoning, counterfactual explanations, and usage-driven policy synthesis can make access

safer by default provided changes remain reviewable, testable, and reversible. With these foundations and guardrails, organizations
can move fast on AWS while maintaining the assurance that access is minimal, intentional, and observable end-to-end.

References
[1] Garfinkel, S. L. (2011). Design Principles and Patterns for Cloud Security. IEEE Cloud Computing, 1(1). — Discusses identity and access control

patterns in cloud platforms, focusing on federated authentication and role-based permission flow.
[2] Daws, C., & Jansen, W. (2012). Access Control Mechanisms for Cloud Computing. NIST Special Publication 500-299. — Presents models for

enforcing identity-based policies and secure user actions in multi-tenant cloud environments such as AWS.
[3] Jin, X., Krishnan, R., Sandhu, R. S., & Ahn, G. J. (2012). Role-Based Access Control Models for Cloud Computing. Computer, 45(2), IEEE. —

Explains how RBAC and IAM frameworks can be extended for fine-grained permission flow across virtualized resources.
[4] Takabi, H., Joshi, J. B. D., & Ahn, G. J. (2010). Security and Privacy Challenges in Cloud Computing Environments. IEEE Security & Privacy, 8(6),

24–31. — Early foundational work that highlights access management, trust delegation, and policy enforcement in cloud ecosystems.
[5] Popa, R. A., Zeldovich, N., & Kaashoek, M. F. (2011). How to Protect Cloud Applications with Encrypted Data. USENIX Security Symposium. —

Provides a cryptographic approach to safeguarding identity-linked actions and authorization in cloud workflows.
[6] Hu, V. C., Ferraiolo, D. F., Kuhn, R., et al. (2014). Guide to Attribute Based Access Control (ABAC) Definition and Considerations. NIST Special

Publication 800-162. — Defines ABAC, the logical model underpinning AWS IAM’s identity-based access management.
[7] Ferraiolo, D. F., Kuhn, R., & Chandramouli, R. (2017). Attribute-Based Access Control. Artech House. — Provides a theoretical and

implementation basis for modern IAM policies.
[8] Wu, Y., Shao, W., & Zhang, W. (2013). Access Control as a Service in Cloud: Challenges and Strategies. IEEE Transactions on Cloud Computing,

1(1), 1-13. — Describes service-oriented access control mechanisms compatible with AWS-like IAM models.
[9] Chandramouli, R., & Ferraiolo, D. F. (2016). Managing Access Control in Cloud Systems with Attribute-Based Models. Journal of Information

Security, 7(2), 70-85. — Discusses ABAC adaptation for large-scale multi-tenant infrastructures.
[10] Almorsy, M., Grundy, J., & Müller, I. (2016). An Analysis of the Cloud Computing Security Problem. IEEE Software, 33(2), 38-44. — Examines

access control and policy enforcement in distributed clouds.
[11] Gietzen, S. (2017). AWS IAM Privilege Escalation – Methods and Mitigation. Rhino Security Labs Technical Report. — Real-world study of IAM

misconfigurations and privilege flows
[12] Designing LTE-Based Network Infrastructure for Healthcare IoT Application - Varinder Kumar Sharma - IJAIDR Volume 10, Issue 2, July-

December 2019. DOI 10.71097/IJAIDR.v10.i2.1540
[13] Baiyu Liu, Abhinav Palia, Shan-Ho Yang. (2018) A Scalable Permission Management System With Support of Conditional and Customized

Attribute .
[14] Liu, B., Palia, A., & Yang, S.-H. (2018). A Scalable Permission Management System With Support of Conditional and Customized Attributes. arXiv

preprint arXiv:1804.06044. — Presents a scalable ABAC-style system similar to AWS IAM, with conditional/custom attributes.
[15] Thallam, N. S. T. (2021). Privacy-Preserving Data Analytics in the Cloud: Leveraging Homomorphic Encryption for Big Data Security. Journal of

Scientific and Engineering Research, 8(12), 331-337.
[16] Krishna Chaitanaya Chittoor, “Architecting Scalable Ai Systems For Predictive Patient Risk”, INTERNATIONAL JOURNAL OF CURRENT

SCIENCE, 11(2), PP-86-94, 2021, https://rjpn.org/ijcspub/papers/IJCSP21B1012.pdf
[17] The Role of Zero-Emission Telecom Infrastructure in Sustainable Network Modernization - Varinder Kumar Sharma - IJFMR Volume 2, Issue 5,

September-October 2020. https://doi.org/10.36948/ijfmr.2020.v02i05.54991
[18] Thallam, N. S. T. (2020). The Evolution of Big Data Workflows: From On-Premise Hadoop to Cloud-Based Architectures.
[19] Reinforcement Learning Applications in Self Organizing Networks - Varinder Kumar Sharma - IJIRCT Volume 7 Issue 1, January-2021. DOI:

https://doi.org/10.5281/zenodo.17062920

https://doi.org/10.36948/ijfmr.2020.v02i05.54991

