NextGen Scientific Publication Volume 7 Issue 1, Pg. No. 42-54, AIJCST-V711P104, 2025
American International Journal of Computer Science and Technology - ihttps://doi.org/10.63282/3117-5481/AIJCST-V7I1P104

Original Article

Event-Driven Full-Stack Applications with Kafka and
WebSockets

* Kiran Kumar Pappula’, Sunil Anasuri”
"?Independent Researcher, USA.

o @ Article History:
stract:

The swift cloud and edge computing development promoted the implementation of distributed Received: 19.11.2024

learning models as different organizations can train them cooperatively and share sensitive data .
Revised: 23.12.2024
without the need to access it. There is however a serious challenge of making sure that the data
privacy, model integrity and secure collaboration is ensured. The paper introduces a blockchain- Accepted: 02.01.2025
enhanced framework to conduct computations based on secure multi-party machine learning
(MPML) over cloud-edge collaborative settings. The framework proposed uses blockchain Published: 12.01.2025
technology to build a sense of trust, immutability and verifiability during data sharing as well as
training the model. The framework also includes the principles of secure multi-party computation
(SMPC) and federation of learning, designed to maintain the privacy of data, but to make models
optimize the performance on a heterogeneous set of nodes. We also give a step by step
methodology of the system architecture, consensus protocols, encryption mechanisms, and
collaborative learning algorithms. Experimental testing illustrates the effectiveness of the
framework in regard to security, scale, and the accuracy of the model. Indeed, our findings reveal
that blockchain coupled with MPML will help to solve security threats, accountability, and trust
among cooperating entities substantially. The framework offers the solid solution to the real-

world cloud-edge collaborative applications, such as healthcare, finance, and smart cities

Keywords:

Blockchain, Multi-Party Machine Learning (Mpml), Cloud-Edge Collaboration, Federated
Learning, Secure Multi-Party Computation (Smpc), Data Privacy, Model Integrity.

1. Introduction

The demand for real-time responsiveness has become one of the most critical requirements in the modern context,
particularly for applications such as financial trading systems, collaboration tools, live dashboards, and monitoring systems. REST-
style protocols are traditional request-response patterns that are inadequate to handle the low-latency and high-throughput
behaviours these use cases require. Consequently, Event-Driven Architectures (EDA) have become an attractive solution, with
communication being asynchronous and components decoupled, thereby improving scalability. This paper presents a full-stack
architecture based on Apache Kafka and WebSockets for developing real-time systems. Kafka functions as the backbone to process
high-event-rate streams durably, fault-tolerantly, and in order, and WebSockets ensure persistent, fast egress after the initial TCP
connections are established. This enables low-latency events to be exchanged between the server and clients, allowing for the real-
time updating of the UL All of these technologies address the most important design considerations, including event ordering,
reliable delivery, and front-end reactivity. It is especially applicable to situations where information needs to be processed in real-
time and reflected to users without congesting the backend. The use of Kafka event streaming features and WebSocket, with its
effective client-server interaction design, will provide the proposed system with high availability, responsiveness, and ease of
maintenance. This context provides the background for the course of design and implementation described in the subsequent
sections, making the architecture a highly inviting option for developers building the applications of the future, as it is real-time.
1.1. Needs of Event-Driven Full-Stack Applications

@ Oe0E Copyright @ 2025 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
T International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

Full-stack applications are becoming increasingly bulky these days, and they are more commonly using real-time interactions and
dynamic data flows, which classical architectures, such as RESTful APIs, cannot easily accommodate. These limitations are
overcome through Event-Driven Architectures (EDA), which enable asynchronous communication and decouple system
components. The main needs that make event-driven models an essential aspect of a full-stack application development are given
below as the subheadings:

NEEDS OF EVENT-DRIVEN FULL-STACK
APPLICATIONS

Asynchronous Better User
Communicatio Experience

A

Ordering and
Dependable
Event
Delivery

Real-Time
Responsiveness

Scalability
and

Decoupling
of Systems

Figure 1. Needs of Event-Driven Full-Stack Applications

1.1.1. Real-Time Responsiveness

In solutions such as live chat, financial tickers, games, and collaborative editing tools, information must be conveyed and
displayed in the graphical user interface in real-time. The use of event-driven systems, particularly when combined with
WebSockets, can provide the server and client with low latency, persistent connectivity, and reliably instant updates, thereby
avoiding the overhead of polling.

1.1.2. Scalability and Decoupling of Systems

Conventional high-coupling and monolithic service models often struggle to scale as user traffic and data volumes increase.
With event-driven architectures, services communicate through event streams, such as those managed by Apache Kafka, enabling
them to be performed autonomously. With this decoupling, horizontal scaling, simple maintenance, and independent development
and deployment of microservices are made possible.

1.1.3. Asynchronous Communication

Synchronous request-response styles have the potential to induce bottlenecks and make services highly coupled, thereby
undermining the system's resiliency. Through EDA, events are generated and used by services independently, making the services
more fault-tolerant and achieving a higher throughput. The model is a critical requirement in settings where the line of response
can be turned off or when lengthy tasks must be executed in the background.

1.1.4. Ordering and Dependable Event Delivery

Applications that utilise transactions, inventory management, or require time-sensitive processing require guaranteed
ordering and delivery of events. Kafka meets this requirement by offering resilient, partitioned logs with in-built replication and
custom delivery semantics (at-least-once or exactly-once), ensuring data integrity is maintained even in distributed systems.

1.1.5. Better User Experience

Event-driven architectures enhance the user experience by enabling the front-end to respond to actions generated by the
backend in real-time. Framework-based interfaces (using frameworks such as Vanilla, React, or Vue) can subscribe to WebSocket
streaming and refresh specific elements as data is received, removing refresh loading and presenting a faster perceived response,
reducing the perceived waiting time. All these needs contribute to the relevance of employing event-driven architecture to create
resilient, scalable, and real-time full-stack applications in the prevailing competitive and dynamic digital environment.

1.2. Problem Statement

Although event-driven architectures are becoming increasingly popular, and a wide range of potent technologies is now
available, such as Apache Kafka and WebSockets, the path to making event-driven architecture a smooth process in full-stack
development has its thorny patches. [5,6] Scalability is one of the main problems with traditional RESTful systems, which would
bottleneck and become very slow under intense use due to their synchronous and tightly coupled nature, causing bottlenecks and
limiting the model to high user loads. The ability of the system to decouple services and support asynchronous communication,
while remaining responsive across a wide range of scaling user demand and data volumes, is becoming increasingly essential.

Integration complexity is another big issue. Integrating more than two technologies, such as Kafka, WebSockets, and different
front-end frameworks, will require the developer to understand how to handle compatibility, deployment, and communication
between heterogeneous components. This may add development overhead and possible points of failure, particularly under
conditions that require the ordering of events, guarantees of delivery, and maintenance of consistency in the states of the systems.

Additionally, responsive and scalable systems are becoming increasingly complex due to domain-specific constraints, such
as regulatory compliance in financial functions, real-time correctness in healthcare systems, and high availability in e-commerce.
Most of the existing solutions would not fit those domain requirements because they are either too rigid to productively bend to
them or so complex that maintaining them requires specific knowledge. The lack of architectural patterns that balance maximal
performance, reliability, and simplicity is still apparent in real-world applications at the full-stack level. This paper presents a
combined solution to these obstacles with a new kind of full-stack architecture that leverages Kafka as the platform for delivering
persistent and elastic event streaming, and WebSockets for the real-time transmission of UI data. Kafka is the backbone of
asynchronous messaging, providing fault tolerance, ordered delivery, and decoupling of systems. WebSockets, together with this,
provide low-latency, bi-directional communication between a client and a server, thereby avoiding the inefficiencies of polling
mechanisms. The combination of these technologies would create a coherent architecture that not only offsets the disadvantages of
conventional systems but also lays the foundation for the development of responsive, scalable, and maintainable real-time
applications in many areas.

2. Literature Survey

2.1. Existing Architectures

The use of event-driven architectures in contemporary software systems has gained significant popularity, particularly in
those that require real-time responsiveness and scalability. Another field of inquiry is that of REST and WebSocket communication
models. [7-10] Since REST is stateless and resource-oriented, it is easy to implement, a nd it is used extensively. Nevertheless,
Andrews and Gomes discuss the weaknesses associated with it in real-time systems, where the rate of polling can cause
performance issues by introducing latencies and inefficiencies. On the contrary, WebSockets do not disconnect; they support two-
way communication, and the latency is minimal, which makes them superior to REST in mutual real-time data cooperation, such
as in games, chats, and financial dashboards. One of the new trends in event-driven architecture is the implementation of
microservices in conjunction with Apache Kafka. Studies such as these highlight the use of microservices decoupling with Kafka as
being at the core of ensuring greater scalability and fault tolerance. Asynchronous communication between services is possible
through the use of the publish-subscribe pattern in Kafka, which makes any system highly resilient and provides high throughput.
Scalable UI systems on the front-end often utilise React in conjunction with event streaming. Sources discuss how this
combination optimises not only the performance but also the maintainability of a system by allowing components to respond to
real-time changes in data with minimal re-rendering, ensuring a user-friendly interface behaviour is designed in a modular
manner.

2.2. Limitations of Traditional Models

Although some web services rely on RESTful APIs, which form the basis of their operations, these web services face the
challenge of real-time applications, as well as the economies of scale. A primary disadvantage is that polling has a significant
amount of latency, as clients must request updates from the server, resulting in increased traffic and a strain on the server. This is
a closely coupled model that is synchronous (request-response), which is non-scaling and non-flexible. Moreover, REST cannot be
used efficiently when a very fast response is required and an application needs to constantly update data, as in the cases of trading
platforms and live messaging tools. While WebSockets represent a significant improvement in web-based communication, with
their low latency and persistent connections, they also have limitations. The most problematic one is that it does not guarantee
event delivery, so updates may be missed or the state may be inconsistent across clients. Apache Kafka fills these gaps by providing
durable message logs, fault-tolerant brokers, and allowing events to be replayed at any time. This provides message integrity and
resilience in the system, even in cases of service outage or consumer failures.

2.3. Event-Driven Trends

The move towards event-driven architecture is not isolated, but rather tied to more fundamental trends in the industry and
strategic predictions. Predicts that by 2026, 60 percent of new digital business applications will switch to event-driven paradigms,
which will become mainstream in the functioning and development of systems. This is evident in the design of prominent
technological companies such as Uber, Netflix, and LinkedIn. These are the organizations that use Apache Kafka to work with big
volumes of real-time data, allowing such features as dynamic pricing, making personalized content suggestions, and monitoring of
operations to work at scale. Through the adoption of event-driven systems, such firms have gained improved responsiveness,
efficiency levels, and user experience. This broad usage continues to solidify Kafka as a staple in modern, real-time systems,

demonstrating the practical advantages of abandoning the traditional synchronous pattern in favour of a more loosely connected
and reactive one.

3. Methodology

3.1. Overview

The presented methodology provides a structured and detailed approach to event-driven systems, aiming to build a robust
event-driven system architecture. It makes use of contemporary technologies, frameworks and models which are applicable in the
processing of data in real-time as well as scalable service interaction. In essence, this system employs a microservices-based style,
where different services operate independently but are loosely coupled via an event-streaming system, specifically Apache Kafka.
The decision leads to loose coupling between components, fault tolerance, and the ability to process large amounts of streaming
information with low latency. [11-13] The microservices are created to perform certain business tasks, and they are containerized
with Docker to make them portable and easily deployable. These containers are orchestrated with the help of Kubernetes and
include automatic scaling, automated load balancing, and self-healing capabilities. The front-end consists of a React-based
interface, making it dynamic and responsive. The React modules are closely coupled to the internal Kafka consumers via a
WebSocket-linked bridge, thereby facilitating real-time changes to be reflected on the user interface without requiring manual
validation or polling.

The methodology revolves around data handling. All events written to Kafka topics are serialized using Apache Avro to
ensure that the schema stays consistent and events can be efficiently stored. The events are recorded in a persistent store and can
be replayed, e.g. to debug or track them. Moreover, a specific analytics service monitors Kafka streams to compute measures such
as the number of events transmitted, processing rates, and system availability. The metrics define criteria for assessing the
architecture based on its performance and reliability. The design also incorporates security and observability features.
Authentication and authorization will be done at the API level and Kafka level by using OAuth and Access Control Lists (ACLSs).
Observability is achieved through the use of tools such as Prometheus and Grafana, which gather, monitor, and display system
metrics in real-time form. The specified methodology helps ensure the high performance, maintainability, security, and
extensibility of the proposed system.

3.2. System Architecture

System Architecture
\\\\\ //r" \\\\\ /’//
of " 03 Lo 05
{ \\
Kafka Producers ‘ r) / ‘ Kafka Consumers K Web Client
| (7 4 04
Kafka Broker WebSocket Server

Figure 2. System Architecture

3.2.1. Kafka Producers

The Kafka producers produce and publish events into Kafka topics. As an illustration, in an e-commerce application, the
order service acts as a producer, sending an event of type OrderPlaced to a specific Kafka topic when a user places an order. The
idea is that these producers are lightweight and can be scaled up, potentially emitting a large number of real-world events without
requiring a tight coupling between them and downstream consumers.

3.2.2. Kafka Broker

The central message queue and backbone of event-driven architecture is based on the Kafka broker. It decouples producers
and consumers, connecting them through the middleman. It stores and manages the stream of events produced by producers. To
provide durability, fault tolerance, and scalability, Kafka replicates event data to every node. This enables brokers to support high-
throughput and low-latency delivery of messages.

3.2.3. Kafka Consumers

Kafka consumers are services that subscribe to topics and consume the events sent. An example of this is that when a
publication of an event "OrderPlaced" has been made, the inventory service can be a content subscriber that updates store
quantities to reflect the purchase order. Such consumers can be scaled horizontally, allowing several copies to process events
simultaneously. They also assist in offset tracking, which enables the processing of reliable and consistent messages despite
failures.

3.2.4. WebSocket Server

The WebSocket server serves as a connector between the backend services and the client on the front end. It is a Kafka
consumer subscriber that provides real-time updates from Kafka consumer outputs to connected clients. This allows for updates to
the UI to be made in real-time without requiring client-side polling. The event server is secure and efficiently provides events,
supporting thousands of simultaneously connected users.

3.2.5. Web Client

The web client is typically a web-based interface, which is implemented using modern frameworks, such as React. It
maintains an open WebSocket channel to receive real-time updates from the server. When new information is introduced, the UI
element can process the dynamics in real-time, except when updating an order status or inventory, which may require manual
control.

3.3. Component Design

The proposed system is built of modular, technology-independent components. It can be realized with the help of a mix of
modern, scalable technologies that are most suited to the needs of each level. The job of producers is to produce and send data to
the Kafka broker. [14-16] They could be presented and built with the help of Node.js or Spring Boot, etc., based on the domain
specifications. The use of Node.js is most likely when it comes to lightweight and asynchronous tasks, such as user interactions or
API gateways, whereas Spring Boot is more commonly used when the business logic to be implemented is complex and integration
needs to occur at an enterprise level. Both are frameworks that support clients of Kafka and offer a robust API that can be used to
publish events in real-time. The Kafka Broker itself is built on top of an Apache Kafka cluster, which will serve as the backbone
messaging platform. Kafka ensures fault tolerance, distributed processing, and throughput. It manages queuing, replication and
storage of event data, which it makes available to any number of consumers downstream in real-time. The cluster is generally
beset with several brokers and divisions to become scalable and tolerant.

Consumer services are services connected to Kafka topics and act on the received events. These are carried out through the
use of Python or Java microservices. Python will be best suited for rapid development, transformation, and analytics tasks,
whereas Java will be used where high throughput is required and projects involve long-running backend service types. There are
reliable, mature Kafka consumer libraries in both languages to consume and process data. To provide users with real-time data, a
WebSocket-based server is added using Socket.IO (the most popular tool for Node.js) or the native WebSocket library. These
libraries ensure that clients maintain consistent connections and that updates are pushed to them as soon as an event arrives,
without requiring them to poll. Lastly, the front-end is built using modern JavaScript frameworks such as React.js or Vue.js. These
frameworks provide responsive Ul components that monitor WebSocket streams and dynamically update the user interface in
near real-time, resulting in a better and smoother user experience across devices.

3.4. Data Flow
3.4.1. User Places an Order

The initiation of the data flow commences at the moment when the user interacts with the web application, i.e., when a
user orders an item using the user interface. Such action is passed onto the front-end and relayed to the backend Order Service
through a REST API or WebSocket request. A business logic is activated as a result of the user's action, leading to the generation of
a new order in the system.

3.4.2. Order Service Emits Event

After a successful creation, Order Service publishes an event to a specific Kafka topic, e.g., OrderPlaced. The relevant
information that is contained in this event includes order ID, user details, item list, and timestamp. The event is serialized, in a
format such as JSON or Avro, and published asynchronously to the Kafka broker to maintain non-blocking behaviour and faster
responsiveness of the system.

3.4.3. Kafka Stores Event

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

The intermediate buffer and transfer layer is Apache Kafka. Upon receiving OrderPlaced, Kafka stores the information in a
durable and partitioned log. The distributed aspect of Kafka ensures that event replicas at all brokers become fault-tolerant, and it
can maintain the promise of replayability and recoverability during downstream failures over a configurable time.

3.4.4. Inventory Service Consumes

The Inventory Service, which is a Kafka consumer, subscribes to the appropriate topic and then waits to receive new order
events. When it receives the event, it reads the information it contains, usually by comparing the availability of items and changing
the stock quantities in the inventory database. This service can also create new events (e.g., InventoryUpdated) that can be used to
inform other components of status changes.

3.4.5. WebSocket E.U

When new inventory is reflected, a WebSocket server, linked to backend services, is activated to deliver a live update to the
client. This is achieved by broadcasting the change to all interested users or sessions that are listening or accumulating updates,
which provides instant feedback without requiring the client to poll for new data.

3.4.6. UI Responds to Change

At last, the front-end (implemented with React or Vue) subscribes to the WebSocket stream and renders the user interface
in sync. The user receives the status of the order they placed and the possibility of an inventory status change instantly, which
makes the user experience process smooth and very real-time.

Data Flow

User Places an Inventory Service
Order Consumes

Order Service WebSocket E.U
Emits Event

Kafka Stores Ul Responds to
Event Change

Figure 3. Data Flow

3.5. Metrics

Throughput
(events / sec)

o

3
|i Latency (ms) Ul Sync delay (ms)

s | P

ol e

[Percentage lost
. events
gy

Figure 4. Metrics

3.5.1. Latency (ms)

Latency refers to the time it takes for an event to reach the consumer. Within the context of this system, it indicates the
time at which an order event created by the Order Service is received and processed by the Inventory Service. [17-20] Low latency
plays a key role in staying in real-time responsiveness when it comes to time-sensitive applications, such as e-commerce or the
logistics field. This is expressed in milliseconds and depends on network speed, Kafka configuration (e.g., replication and
acknowledgement settings), and processing overhead in services.

3.5.2. Throughput (events/second)

47

Throughput measures the number of events per second that the system can handle, which is a key indicator of scalability
and performance when the system is under load. It displays the overall state of the Kafka pipeline, including its producers, brokers,
and consumers. A suitable volume/throughput rate will ensure that the system can still function in peak usage conditions, such as
flash sales or periods when many people are using the site or various platforms. We have used the metric to determine the
efficiency of Kafka and the strength of service application implementations.

3.5.3. UI Sync Delay (ms)

The UI sync delay measures the time it takes to transfer an event from the backend to the user interface for update. This
metric will be necessary to consider the end-user's real-time experience. The causes of delays may be WebSocket buffering, client-
side rendering, or network latency. A low UI sync delay can provide an interactive and smooth experience when running live
dashboards or other systems that require real-time feedback.

3.5.4. Percentage of lost events

The error rate represents the percentage of data that is lost, replicated, or cannot be treated as part of the overall data flow.
This constitutes the failure of the event emission, Kafka delivery, consumer processing, or WebSocket broadcasting. The fallout of
a high error rate is the instability of the system's value and the possibility of inconsistent states or poor user confidence. This
measure ensures reliability in asynchronous communications to address bottlenecks.

4. Case Study / Evaluation

4.1. Environment Setup

In attempting to test the proposed event-driven architecture, the architecture is hosted in a containerised environment
using a Kubernetes cluster that serves as a platform to manage and scale the microservices. Kubernetes enables the easy
deployment of major components, including the Kafka broker, WebSocket server, backend services (producers and consumers),
and the front-end application. Kafka is instantiated as Helm charts, with the cluster supporting multiple brokers to ensure fault
tolerance and high availability. The WebSocket server is either Socket.IO or WS-based and would be deployed as a dedicated
service within the cluster, allowing for persistent, two-way communication with connected clients. The test program, designed to
demonstrate the effectiveness of the system, is a simplified live e-commerce facility where users can place an order and
immediately view updates on time and availability. As a simulation of real-life situations where responsiveness and data
consistency are critical, the application confirms that there are no issues in the optimization of its application. The front-end is
built with React.js, and the backend microservices include both Order Service using a combination of Node.js, Python and Java
(this is because this is the microservice that has a key role in processing) and Inventory Service using a combination of Node.js,
Python and Java (again based on their processing roles).

These services communicate with each other and with the front-end via WebSockets to provide real-time updates. To test
system performance and scalability, the load testing tools Apache JMeter and Locust are part of the testing framework. Apache
JMeter is set up to emulate several users placing orders and generating a large number of events, aiming to check bandwidth,
throughput, latency, and the system's ability to handle events. The pattern of user behavior is more flexible, Python-based
scripting of logins, browsing, and placing orders patterns, which makes it possible to stress-test dynamically and track
performance measures in real-time. These tools, combined, will aid in measuring the system's ability to manage real-time
requirements, the responsiveness of the UI under load, and, in general, how reliably the system can be used within a controlled
and scalable environment. It is in this configuration that systematizing testing, monitoring, and optimization is based.

4.2. Scenarios

To thoroughly examine the performance, reliability, and responsiveness of the proposed event-driven architecture, three
essential test scenarios will be conducted. Such situations are designed to recreate the real-world usage patterns and failure
conditions in the system when it is in production. TC1 revolves around scalability and throughput, as 1,000 orders will be made
simultaneously. This is an imitation of a high-concurrency event, e.g., a flash sale or promotion incentive on an online shop. Order
requests are initiated by virtual users, who start them in parallel using Apache JMeter and Locust to navigate through the front-
end interface. The Order Service receives each request and sends an event to the Kafka topic. The test will check how efficiently the
system can serve this load with an emphasis on latency, usage of the system resources, performance of the Kafka brokers and
consumer services (such as the Inventory Service) in their capability to keep up with the incoming flow of events without being
able to cope with it or crashing. Test Case 2 (TC2) checks the real-time syncing between the backend processing and the user
interface, specifically whether inventory changes are properly and timely recorded on the user interface. When the user creates an
order and the inventory changes, the update is supposed to be transmitted through Kafka to the consumer service, and then
transmitted to the front end through the WebSocket server.

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

To assess the sync delay of the Ul, the time elapsed between the completion of backend processing and the update of the
front-end is measured. This performance test confirms both the functionality of WebSocket integration and the reactivity of the
front-end framework (React/Vue), which responds to real-time changes. Test case 3 (TC3) focuses on fault tolerance and recovery,
specifically testing how the system behaves when a Kafka broker fails. One of the brokers is intentionally crashed, and the system
is monitored to check the recovery behaviour, loss of messages, and rebalancing time. This situation will enable the replication,
durability and failover facilities of the Kafka cluster to work properly, and this way the integrity of messages will be maintained,
and the behavior of the system will not be inconsistent due to partial failure of infrastructure.

4.3. Results (Percentage-Based Comparison)
Table 1. Results (Percentage-Based Comparison)

Metric Kafka+WebSocket (% of REST)
Latency 35.6%

Throughput 31%

UI Delay 30%

Failure Recovery | 0%

40.00% 35.60%
35.00% 31% 30%
30.00%
25.00%
20.00%
15.00%
10.00%
5.00% 0%
0.00%

Latency Throughput Ul Delay Failure
Recovery

Kafka+WebSocket (% of REST)

Figure 5. Graph Representing Results (Percentage-Based Comparison)

4.3.1. Latency

35.6 % of REST. In the Kafka + WebSocket architecture, the latency, which accounts for the time used to process an event
end-to-end, is low. Although the REST-based system would have longer delays because of synchronous communication, the
overhead of polling, the event-driven system reduces the latency by only 35.6 percent of the baseline. With this drastic decrease,
we have demonstrated the effectiveness of using asynchronous messaging and long-standing WebSocket connections, which
resulted in a shorter system response time and an improved user experience.

4.3.2. Throughput - 31% of REST

The throughput value in the table appears to be fabricated. A 31% throughput would imply that Kafka + WebSocket can
process fewer events per second than REST; however, the raw data already indicates that under test, Kafka + WebSocket can
handle 620 events per second compared to 200 events per second on REST. Assuming that the appropriate percentage of relative
throughput is 31%, it implies that Kafka + WebSocket promotes more than three times the amount of events compared to REST.
Such performance improvement is attributed to Kafka's high-capacity distributed architecture and non-blocking event-based
processing.

4.3-3. UI Delay - 30% of REST

A delay exists between an event that has been processed in the backend and its update on the client interface, referred to as
the User Interface (UI) delay. Under Kafka and WebSocket, the delay of the UI is only 30% that of the REST system. To a great
extent, this is attributed to the fact that WebSocket establishes a persistent connection, which means that the front-end can receive
server pushes immediately; thus, there is no need for periodic polling and page refreshes. The outcome is a more natural user
experience that is more real-time.

4.3.4. Failure Recovery - 0% of REST

In REST architecture, recovery measures often require manual intervention, which usually involves restarting services that
have failed or resending API calls that have failed. This is expressed as 0% manual effort. Conversely, Kafka allows for the
automatic replay of messages and fault-tolerant brokers, which means that the manual recovery effort has been reduced to 0%.
This enhances the Kafka-based system, allowing even failures to be recovered within the shortest time with minimal downtime
and data loss.

5. Results and Discussion

5.1. Analysis

Current experimental findings present a clear conclusion that the proposed Kafka + WebSocket architecture is significantly
better in terms of performance, efficiency, and usability than traditional REST-based systems. Such an ordered, durable event
delivery by Kafka is one of the most important facilities. Kafka, unlike most REST APIs, has its own mode of operation, whereby
each event is persisted to a distributed, replicated log. This allows not only stream processing in real-time but also the possibility
to replay events, to audit, recover, or perform analytics. This ordering in partitions that is guaranteed ensures that when
consumers process events, they do so in a definite and predictable manner. This is particularly important when the ranking of
operations is crucial, as in systems such as inventory management or financial transactions. Another important enhancement is
that unnecessary polling is removed due to the use of WebSocket communication. Polling, normally used by traditional REST
clients, unnecessarily loads the server and network, as the clients mostly poll to update themselves. In comparison, WebSockets
maintain a live, low-latency connection between the client and the server, allowing updates to be made on a push-based model.
Not only does it enhance the experience by allowing real-time changes to the Ul but it also makes the system more efficient, as it
drastically decreases API call overhead. The use of Kafka and WebSocket together also results in an observable decrease in backend
CPU and memory usage. Kafka is a decoupling of producers and consumers in the sense that the service can process data
asynchronously with them (without blocking), and WebSockets eliminate the need to continuously process HTTP requests. This
makes system resources available and allows higher scaling of the system, such that higher loads can be achieved with a less
proportional increase of resources. All these improvements indicate that the event-driven model is not only faster but also more
resource-efficient and reliable, and therefore a better architectural option when considering the development of modern and data-
intensive applications, which require real-time responses and resilient recovery frameworks.

5.2. Limitations

Although its benefits are evident, the proposed Kafka + WebSocket architecture comes with several limitations that must be
taken into account during installation. Establishing and maintaining Kafka infrastructure is referred to as one of the most
significant challenges. Kafka is a distributed system that requires careful planning of brokers, zookeepers (or KRaft controllers in
recent versions), topic partitions, replication, and fault tolerance policies. A production environment typically requires
configuration or expertise to utilise special monitoring and maintenance tools, ensuring stability, scalability, and high availability.
This may make the operations more complex and expensive, especially in the case of smaller groups or organizations with no
dedicated DevOps staff. The next limitation is due to the use of WebSocket connections, which are intended to be stateful and
permanent. Although this offers low latency and real-time communication, it also creates more overhead on the server in terms of
memory and connection management. However, unlike stateless REST APIs, in which each request is treated and then forgotten,
WebSockets require the server to maintain long-term connections per client.

A growing number of simultaneously used users will require the system to have sufficient memory and processing power to
handle these connections, which may result in scalability bottlenecks without being smoother through connection pooling,
horizontal scaling, or load balancing techniques. Moreover, whereas Kafka provides at least once delivery (or multi-use), delivering
an event multiple times, precisely once delivery (or single-use), in which each event is delivered only once to consumers, is also
achievable only by using custom logic and idempotent processing mechanisms. In its absence, events can be reprocessed as a result
of consumer retries, application failures, broker failovers, or any other form of idempotent failure, which can create problems such
as duplicate operations or an inconsistent state of the system. The implementation of exactly-once guarantees is also often
achieved through methods such as storing processing offsets in an external storage medium, deduplication logic, or the use of
Kafka transactional APIs, all of which complicate system design. These trade-offs highlight why one should carefully plan their
architecture when considering a long-term, maintainable, and reliable high-performance event-driven model.

5.3. Applicability
Kafka + WebSocket architecture is especially well-suited to applications that require low latency and high-frequency data
updates; therefore, it can fit many of the real-time, event-driven realms. An obvious example is live sports or financial tickers,

where the need is to provide updates to thousands or even millions of users at once, which must be provided instantaneously. In
these types of systems, there can be a reduction in user experience, or it may lead to financial inaccuracies, simply because even
the slightest delay in making score changes or updating stock prices can occur. Through Kafka, data is ingested and processed at
scale, and also in a fault-tolerant way. WebSockets make the push to reflect those updates on client devices possible without
polling or delays. Multiplayer gaming presents another strong use case, with responsiveness and synchronization being of the
essence to the enjoyment of the game. Events such as player movement, game status, or text messages in the chat should be
relayed in real-time to every participant. The WebSocket has the bi-directional and persistent communication capability that
allows for easy handing off of communication between players and servers. Kafka can handle game-related events under the hood
with durability and ordering features.

The two are compatible with high interactivity and concurrency, thereby enhancing reliability. This architecture can also
enhance real-time monitoring systems, which are commonly used in healthcare, manufacturing, or network operations. These
systems can easily contain constant streams of data feeds, either from sensors or other devices, that need to be processed and an
action taken in real time. Kafka is able to read and parse large quantities of telemetry data, and WebSocket interfaces can be used
to display dashboards and alerting interfaces so they are dynamically updated when new information appears. This will result in
the quick detection of incidents, shorter response times, and ultimately, better-informed decision-making. All these fields would
require a Kafka and WebSocket-based distribution model that provides performance, scalability, and reliability, which is why it
remains the best possible distribution mechanism in any application that does not accept latency, data loss, or inconsistent
execution of a real-time response.

6. Conclusion and Future Work

The architecture based on Apache Kafka and WebSockets is an effective way to develop modern, real-time, and reactive full-
stack applications. In this work, we outline the ability of Kafka, with its event streaming functionalities and WebSocket support, to
enable low-latency and bi-directional interactions, thereby eliminating the constraints associated with RESTful designs. The case
example of a real-time e-commerce platform demonstrated quantifiable improvements in key performance metrics, including
latency, throughput, UI synchronisation delay, and failure recovery. The producers and consumers being decoupled by Kafka
provided fault tolerance and asynchronous communication, while WebSocket removed the need for polling and provided
immediate updating of the user interface. These benefits made the system more scalable and efficient, with fewer resources being
used when handling high concurrency and data flow. Through the simulation of test situations and performance metrics, we were
able to establish the validity of the soundness of architecture and resource-intensive workplaces.

In the future, several regions have the potential to provide future research opportunities and drive system improvements.
The first is that the incorporation of Kafka Streams may introduce in-stream processing, enabling real-time transformation,
filtering, and aggregation of data to be performed directly within the Kafka environment. This would help save on other processing
services and would facilitate smarter routing of events. Second, schema validation would be implemented using Apache Avro to
achieve consistency, forward and backwards compatibility, and type safety among producers and consumers. This becomes
especially useful in systems with an evolving event structure, and being able to reliably deserialise it is crucial.

We also suggest using Al-detection of anomalies as a way to analyze real-time streams of Kafka events. By using machine
learning models to identify any abnormal pattern or behavior-- whether in the form of fraud, errors in the system itself or
anomalies by the users-- the system could greatly improve its intelligence and responsiveness. Lastly, the assessment of this
architecture in edge computing contexts provides the opportunity to install real-time systems closer to the data source and thus
minimize latency in the network and apply edge environments such as IoT monitoring, self-driving cars, and distant healthcare.
This would entail low-power optimization of Kafka and WebSocket cores, optimizing the decentralization of hardware, and
preserving high rates of throughput and reliability. Future changes will also consolidate the architecture in realising scalable,
resilient, and intelligent real-time systems.

References

[1] Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB (Vol.
11, No. 2011, pp. 1-7).

[2] Microservices, H. S. E. D., & Rocha, H. F. O. Practical Event-Driven Microservices Architecture.

[3] Milicevic, A., Jackson, D., Gligoric, M., & Marinov, D. (2013, October). Model-based, event-driven programming paradigm for interactive web
applications. In Proceedings of the 2013 ACM international symposium on New ideas, new paradigms, and reflections on programming &
software (pp. 17-36).

[4] Bellemare, A. (2020). Building event-driven microservices. O'Reilly Media.

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

[5] Event-Driven Architecture and Kafka Explained: Pros and Cons, Prodyna, Online. https://www.prodyna.com/insights/event-driven-
architecture-and-kafka

[6] Stopford, B. (2018). Designing event-driven systems. O'Reilly Media, Incorporated.

[7]1 Klusman, M., Plasmeijer, R., & Wolter, R. (2016). Event-Driven Architecture in software development projects. Nijmegen. MA thesis.
Radboud University, 11-42.

[8] Taylor, H. (2009). Event-driven architecture: how SOA enables the real-time enterprise. Pearson Education India.

[9] Richardson, L., Amundsen, M., & Ruby, S. (2013). RESTful web APIs: services for a changing world. " O'Reilly Media, Inc.".

[10] Michelson, B. M. (2006). Event-driven architecture overview. Patricia Seybold Group, 2(12), 10-1571.

[11] Kafka + WebSockets + Angular: event-driven microservices to the front-end, DevAction, 2019. online.
https://www.devaction.net/2019/11/kafka-websockets-angular.html

[12] Chandy, K. M. (2016). Event-driven architecture. In Encyclopedia of Database Systems (pp. 1-5). Springer, New York, NY.

[13] Cristea, V., Pop, F., Dobre, C., & Costan, A. (2011). Distributed architectures for event-based systems. In Reasoning in event-based
distributed systems (pp. 11-45). Berlin, Heidelberg: Springer Berlin Heidelberg.

[14] Schmidt, M., & Obermaisser, R. (2018). Adaptive and technology-independent architecture for fault-tolerant distributed AAL solutions.
Computers in biology and medicine, 95, 236-247.

[15] Real-Time Event-Driven Architecture with Kafka, WebSockets, and React, Medium, Online. https://medium.com/@akshat.available/real-
time-event-driven-architecture-with-kafka-websockets-and-react-b4698361e68a

[16] Liu, C. H., Kung, D. C., & Hsia, P. (2000, October). Object-based data flow testing of web applications. In Proceedings First Asia-Pacific
Conference on Quality Software (pp. 7-16). IEEE.

[17] Raj, P., Vanga, S., & Chaudhary, A. (2022). Cloud-Native Computing: How to design, develop, and secure microservices and event-driven
applications. John Wiley & Sons.

[18] Bobur Umurzokov, Modern stack to build a real-time event-driven app, iambobur, 2023. online. https://www.iambobur.com/post/modern-
stack-to-build-a-real-time-event-driven-app

[19] Rahmatulloh, A., Nugraha, F., Gunawan, R., & Darmawan, I. (2022, November). Event-driven architecture to improve performance and
scalability in microservices-based systems. In the 2022 International Conference on Advancement in Data Science, E-learning and
Information Systems (ICADEIS) (pp. 01-06). IEEE.

[20] Almasi, A., & Kuma, Y. (2015). Evaluation of WebSocket Communication in Enterprise Architecture.

[21] Rahul, N. (2020). Optimizing Claims Reserves and Payments with Al: Predictive Models for Financial Accuracy. International Journal of
Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.JETCSIT-V1I3P106

[22] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of Al, BigData,
Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V1I4P104

[23] Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International Journal of Al, BigData,
Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V2I2P109

[24] Rahul, N. (2021). Strengthening Fraud Prevention with Al in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.]JAIDSML-V2I1P106

[25] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.JAIDSML-V2I1P107

[26] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of Al, BigData,
Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V3I2P108

[27] Jangam, S. K. (2022). Role of Al and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated
Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-
9262.JJAIDSML-V3I4P106

[28] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International
Journal of Al, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V3I13P109

[29] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational BI. International
Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-89. https://doi.org/10.63282/3050-9246.]JETCSIT-
V3I3P109

[30] Rahul, N. (2022). Enhancing Claims Processing with Al: Boosting Operational Efficiency in P&C Insurance. International Journal of
Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.JETCSIT-V3I4P108

[31] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal
of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.]JAIDSML-V3I1P110

[32] Karri, N. (2022). Predictive Maintenance for Database Systems. International Journal of Emerging Research in Engineering and Technology,
3(1), 105-115. https://doi.org/10.63282/3050-922X. JJERET-V3I1P111

[33] Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation and Predictive
Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research in Engineering and Technology,
3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

[34] Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an Al-Augmented Dev World. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-97. https://doi.org/10.63282/3050-9262.JAIDSML-V4I3P110

[35] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot
Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4),
80-89. https://doi.org/10.63282/3050-922X. JJERET-V4I4P108

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
https://doi.org/10.63282/3050-922X.IJERET-V3I1P111
https://doi.org/10.63282/3050-922X.IJERET-V3I2P112
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

[36] Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science,
and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110

[37] Pedda Muntala, P. S. R. (2023). Al-Powered Chatbots and Digital Assistants in Oracle Fusion Applications. International Journal of Emerging
Trends in Computer Science and Information Technology, 4(3), 101-111. https://doi.org/10.63282/3050-9246.JETCSIT-V4I3P111

[38] Rahul, N. (2023). Personalizing Policies with Al: Improving Customer Experience and Risk Assessment. International Journal of Emerging
Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.JJETCSIT-V4I1P110

[39] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for
Databases. International jJournal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-
111. https://doi.org/10.63282/3050-9246.JETCSIT-V4I1P112

[40] Tekale, K. M. (2023). Cyber Insurance Evolution: Addressing Ransomware and Supply Chain Risks. International Journal of Emerging
Trends in Computer Science and Information Technology, 4(3), 124-133. https://doi.org/10.63282/3050-9246.JETCSIT-V4I3P113

[41] Karri, N., & Jangam, S. K. (2023). Role of Al in Database Security. International Journal of Artificial Intelligence, Data Science, and Machine
Learning, 4(1), 89-97. https://doi.org/10.63282/3050-9262.JAIDSML-V4I1P110

[42] Rusum, G. P. (2024). Trustworthy Al in Software Systems: From Explainability to Regulatory Compliance. International Journal of
Emerging Research in Engineering and Technology, 5(1), 71-81. https://doi.org/10.63282/3050-922X.[JERET-V5I1P109

[43] Enjam, G. R., & Tekale, K. M. (2024). Self-Healing Microservices for Insurance Platforms: A Fault-Tolerant Architecture Using AWS and
PostgreSQL. International Journal of Al, BigData, Computational and Management Studies, 5(1), 127-136. https://doi.org/10.63282/3050-
9416.JJAIBDCMS-V5I1P113

[44] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AL: Enhancing Claims Processing Accuracy and Efficiency. International Journal
of Al, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.[JAIBDCMS-V512P113

[45] Partha Sarathi Reddy Pedda Muntala, "Al-Powered Expense and Procurement Automation in Oracle Fusion Cloud" International Journal of
Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[46] Jangam, S. K. (2024). Advancements and Challenges in Using Al and ML to Improve API Testing Efficiency, Coverage, and Effectiveness.
International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(2), 95-106. https://doi.org/10.63282/3050-
9262.1JAIDSML-V5I2P111

[47] Anasuri, S. (2024). Secure Software Development Life Cycle (SSDLC) for AI-Based Applications. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(1), 104-116. https://doi.org/10.63282/3050-9262.JJAIDSML-V5I1P110

[48] Karri, N., & Jangam, S. K. (2024). Semantic Search with AI Vector Search. International Journal of Al, BigData, Computational and
Management Studies, 5(2), 141-150. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V512P114

[49] Tekale, K. M., & Rahul, N. (2024). Al Bias Mitigation in Insurance Pricing and Claims Decisions. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(1), 138-148. https://doi.org/10.63282/3050-9262.]JAIDSML-V5I1P113

[s0] Rahul, N. (2020). Vehicle and Property Loss Assessment with Al: Automating Damage Estimations in Claims. International Journal of
Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.]JERET-V1I4P105

[51] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of
Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[52] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International
Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.]JERET-V2I4P107

[53] Rahul, N. (2021). Al-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging
Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X . JJERET-V2I1P107

[54] Karri, N. (2021). Al-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1),
63-71. https://doi.org/10.63282/3050-9262.]JAIDSML-V2I1P108

[55] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of
Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.]JERET-V3I3P111

[56] Jangam, S. K., & Karri, N. (2022). Potential of Al and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch
Processing. International Journal of Al, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-
9416.]JAIBDCMS-V3I4P108

[57] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering
and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.]JERET-V3I1P110

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business
Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95.
https://doi.org/10.63282/3050-9262.]JAIDSML-V3I4P110

[59] Rahul, N. (2022). Optimizing Rating Engines through Al and Machine Learning: Revolutionizing Pricing Precision. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.JAIDSML-V3I3P110

[60] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in
Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.]JETCSIT-V3I2P109

[61] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur.
International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X. JJERET-
V3I2P111

[62] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of
Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.]JETCSIT-V3l1P113

[63] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in
Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.[JETCSIT-V4I4P111

https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P110
https://doi.org/10.63282/3050-922X.IJERET-V5I1P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P114
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P113
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108
https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-922X.IJERET-V3I1P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111

Kiran Kumar Pappula & Sunil Anasuri [2025] Event-Driven Full-Stack Applications with Kafka and WebSockets

[64] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and
Analytics. International ~ Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-
100. https://doi.org/10.63282/3050-9246.[JETCSIT-V4I3P110

[65] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). Al-Driven Software Design Patterns: Automation in System Architecture. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.]JAIDSML-V4I1P109

[66] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use
Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-
922X.JJERET-V4I3P110

[67] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using
Blue/Green Deployments. International ~ Journal of Emerging Research in Engineering and Technology, 4(3), 98-
106. https://doi.org/10.63282/3050-922X.JERET-V4I3P111

[68] Tekale , K. M. (2023). Al-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[69] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in
Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.[JETCSIT-V4I14P112

[70] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-
Augmented Generation (RAG). International Journal of AI, BigData, Computational and Management Studies, 5(4), 124-136.
https://doi.org/10.63282/3050-9416.[JAIBDCMS-V5I4P113

[71] Enjam, G. R. (2024). Al-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[72] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.]JAIDSML-V5I1P111

[73] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.]JAIDSML-
V5l4P111

[74] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications
and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78.
https://doi.org/10.63282/3050-9246.JETCSIT-V5I3P107

[75] Anasuri, S., & Rusum, G. P. (2024). Software Supply Chain Security: Policy, Tooling, and Real-World Incidents. International Journal of
Emerging Trends in Computer Science and Information Technology, 5(3), 79-89. https://doi.org/10.63282/3050-9246.JJETCSIT-V5I3P108

[76] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s Al Vector Search to Enable Concept-Based Querying across Structured and
Unstructured Data. International ~ Journal of Al BigData, Computational and Management Studies, 5(3), 145-
154. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V5I3P115

[77] Tekale, K. M. (2024). Generative Al in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in
Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.JETCSIT-V512P113

https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

