

Original Article

Agentic Automation: What's next for Jobs

*Adityamallikarjunkumar Parakala

Lead Rpa Developer at Department of Economic Security, USA.

Abstract:

Agentic automation those systems which not only perform without human intervention but are also capable of independent decision-making is set to revolutionise the future of work in a very significant manner. The main difference between these agentic systems and the traditional automation that only replaces repetitive tasks is that the former are a new level of autonomy that can be reconfigured, learned, and even planned; consequently, they evoke serious enquiries into the extent of lost jobs and transformed ones simultaneously. Thus, on the one hand, practical decision-making is the most endangered task in the sectors of logistics, finance, and customer support; in this respect, routine or monotonous activities of these areas especially are suggested to be displaced rapidly. Contrarily, the demand for areas such as oversight, design, maintenance, and ethical governance of these systems will require a workforce that is ready to take up the challenge, thus the signal turning from substitution to collaboration. The article puts forward that this change will not be the same in all sectors: knowledge work may be productive due to technology; arts and human-centred professions, in turn, could gain more value as technology will empower rather than substitute them. Policymakers and corporate sectors are urged by the article to deal with the issue in two ways. Firstly, the question of the provision of reskilling and adaptive education to be an integral part of the preparation of the workforce for the forthcoming transformations in the labour market. Secondly, the call for setting up regulations that include among the criteria accountability, fairness, and responsible deployment is just another element in the role puzzle that policymakers will have to juggle. Eventually, agentic automation omnipresence forces us to look at the whole social contract around work in a totally different manner, where technologies do not only remove but also trigger the development of a larger range of skills, roles, and economic opportunities.

Article History:

Received: 13.09.2024

Revised: 14.10.2024

Accepted: 29.10.2024

Published: 09.11.2024

Keywords:

Agentic Automation, Artificial Intelligence, Workforce Transformation, Future of Work, Job Displacement, Reskilling, Productivity, Human-AI Collaboration, Ethics, Innovation

1. Introduction

Automation has always been a major aspect of the human history of improvement. From the first machines that changed labour to the latest algorithms that amend the thought process, practically every technological breakthrough has significantly altered the manner in which the communities arrange the labour, allocate the wealth and visualise the future. Essentially, automation has been the use of technology to carry out tasks that require minimum human effort. Over the years, this has been largely represented by factory processes that are mechanised, programmable machines on the production line, or by software that performs certain tasks automatically.

Copyright @ 2024 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-NC-ND 4.0) License (<https://creativecommons.org/licenses/by-sa/4.0/>)

The present shift brings in an entirely different phase, that of agentic automation, which can be termed as such. In contrast to traditional AI tools which are reliant on human instructions, agentic systems possess the capability for decision-making. They are able to define objectives, weigh up options, and take action in the changing surroundings, thus bringing them conceptually closer to 'agents' rather than mere tools. However, these systems are still under the constraints of human control and moral obligations, although their feature of functioning with considerable freedom denotes a major change from the older technologies. In fact, the question is not about machines being able to imitate human labour anymore but rather how far they can enter into activities which were previously recognised as the exclusive domain of humans—strategic planning, adaptive problem-solving, and even creative collaboration.

Figure 1. Automation with Agency: How AI Is Transforming Careers

To comprehend the possible effects of this transformation, it is helpful to see it as the latest amplitude in the seismic history of technological innovations. The changes that took place in the 18th and 19th centuries when machines replaced human manual efforts had a double effect: on the one hand, it led to industrial productivity growth, and on the other hand, it also displaced crafts and changed labour structures. The beginning of the 20th century was marked by the electrification that revolutionised both the industrial sector and the daily life of people and gave rise to the cluster of new industries that were powered by electricity while urban labour markets were being reorganised.

Computing in the mid-to-late 20th century was the process that transferred data from analog to digital, thus making it possible for knowledge work to grow at an exponential rate compared with earlier economies. The advent of AI has propelled machines to the spheres of sensing, speech, and prediction, i.e., the territories of human intelligence. The concerns over job loss, inequality, and disruption were the common threads in the narratives accompanying each technological wave, but at the same time, they brought new possibilities and the emergence of new industries that changed the character of work. In this context, agentic automation might be likened to the coming next transformation of the same magnitude as the mechanisation revolution, and hence, the level of its impact on knowledge work and decision-making structures could penetrate very deeply.

The main question that drives this piece of writing is: What will be the impact of agentic automation on jobs and work structures in the future years? The question, however, does not only ask if some professions will no longer exist. It, in fact, goes on to investigate which work will be changed and in what ways, how companies will change their organisation to integrate the use of automatic systems, and how employees will be able to adjust and prosper in the new era in which machines are not only being used but working together with them. The goals of the conversation were not only to define the concept of agentic automation, to decide how it differs from the characteristics of previous types of automation and AI, and to find out the employment effects by balancing the displaced and transformed job areas. Besides, it is about defining differences between sectors, recognising that the impact of the changes may be different for each, e.g., in healthcare, education, logistics, and creative services. Finally, it is about the aspects of policy and ethics, such as regulation's role, education, and the social safety net in ensuring fair outcomes.

Methodologically, the article is based on a review of different publications that met the authors' expectations. It includes data from academic research, industry reports, and policy analyses that concern the labour impacts of automation and AI. Moreover, it is a narrative that interprets case studies of sectors that are the first to implement agentic systems and, as such, are creating the conditions of how the workplace is changing. The discussion is also supported by comparative analysis, which is a method to examine historical changes of technology to point out the similarities and differences in the way societies deal with disruptive change. These elements

combined form a basis not only for comprehending the technological promise of agentic automation but also for widening out to the economic, social, and ethical matters. In brief, the introduction stages a scenario for a future perspective. This is not talking about a far-off future but rather the present where agentic automation becomes more and more real. The problem is to be exact on the procedure of work and its conditions and find ways by which the development can bring more benefits than losses. This article is placed right against that conflict and is open to the readers to decide if they agree with the author in taking the viewpoint that human intervention and collaboration with automated devices will be the future worklandscape.

2. Understanding Agentic Automation

The development of technology is usually compared to a continuous line, where every new step borrows the features of the previous one and at the same time changes the way people interact with machines. This means that one can only grasp the present if he follows the history from the very beginning of the use of machines in the whole world up to the present day, which is the era of artificial intelligence (AI), and furthermore, to agentic automation – a stage where machines are allowed to perform tasks on their own, comprehend the surrounding environment, and make decisions without the intervention of man.

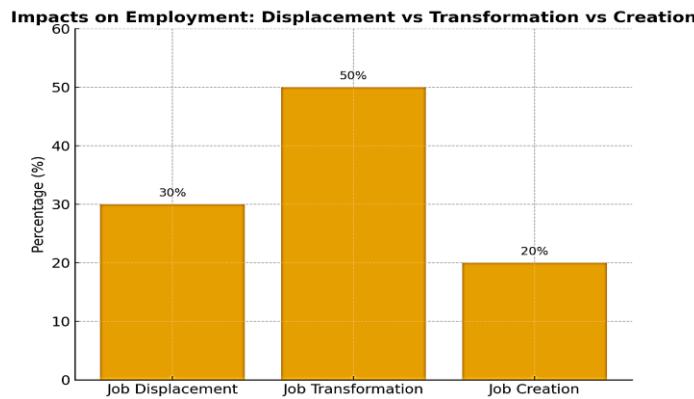
2.1. From Automation to AI

Traditional automation is composed of systems, which are explicitly designed to execute pre-programmed command lines. Such machines or software programmes are basically efficient in an environment which is of a repetitive and predictable nature and are of the assembly line, payroll processing, or data entry type. Among the speed, accuracy, and reliability, the machines' or software's performance aspects are but they lack flexibility. In case there is any variation or change in the environment, they have to be reprogrammed. The employment of AI had signified the next leap. The AI systems were not solely founded on precise rules; they could draw conclusions from data, identify common features, and suggest probable results. Machine learning empowered computers to do image recognition, speech processing, and prediction of future scenarios. Nevertheless, a large part of AI was inactive, i.e., they could only respond to the input or queries but could not initiate or establish their own objectives.

2.2. Defining Agentic Automation

Agentic automation is just one step beyond this line of development. Basically, it means machines that run on their own without any human intervention and still have the ability to be “agents” in a certain environment. These systems not only carry out the tasks they were programmed for or take a look at the data but also they decide which tasks they should do first, select the way they should do them, and are even the first to react to changing situations. Simply put, they are the ones who combine the three features of agency proactivity, self-direction, and contextual awareness. This move is a major one, as it redefines the role of the machine from that of a mere tool to the status of an active member of the workflow. A system with agency can keep a watch over a complicated operation, identify the causes of the problem, and give a solution without even the slightest hint from the human operator. It can bring steps that are created under different systems, freeing the steps in such a way that there is a balance between the parties and even contacting other agents or humans for support in reaching the same goal.

2.3. Comparison with Earlier Automation Stages


The differences between traditional automation, AI, and agentic automation are fundamentally different in scope, flexibility, and initiative. Traditional automation is very effective in scope, managing large volumes of repetitive work, but lacks both flexibility and initiative. The advent of AI brought about the system's flexibility to generalise data and even adapt within certain conditions, although initiative was still very limited. The agentic automation combines all three: it is able to scale work, adapt flexibly to new inputs, and even take initiative in leading activities. The aforementioned changes are reminiscent of historical parallels. In the same way that mechanisation supplemented human muscles and AI cognitive analysis, agentic automation is moving forward to enhance agency—the ability to act in the world with a specific intention. This revelation dethrones the traditional tool and collaborator categories, inviting the enterprise to new arenas but also imposing deep questions on the issues of accountability, control, and division of labour.

3. Impacts on Employment

Many people will lose their jobs because of agentic automation, but the effects will be different for each person. It will have repercussions that go beyond just replacing things, like how technology has gotten better in the past. It will be hard to know how jobs will change, move, and be created. You need to know about these three things—displacement, transformation, and creation—in order to handle the shift effectively.

3.1. Job Displacement Risks

The foremost and quite immediate problem is displacement. Agentic automation is particularly tailored to those areas where tasks are of a repetitive, routine, or clerical nature. These jobs are dealing with procedures that are standardized and, in case they are coded, can be handed over to autonomous systems that are capable of performing them with more speed, consistency, and cost-effectiveness. Some instances are data entry, payroll processing, invoice management, and other back-office functions where the scope of the judgment is limited and the rules are well defined. The risk most closely related to the first one is middle-skill compression. In the past, middle-skill jobs have been the main source of stable and well-paid careers, such as the positions of paralegals, insurance clerks, and transport coordinators, with usually no need for an advanced degree. These roles are mostly based on following the rules, documentation, and structured decision-making. In this way, agentic systems, which are equipped to do the document processing, report generation, and reasoning simulation activities, can become the reason for the shrinking of such kinds of jobs; hence, the middle of the labor market might be vacant. The sequence of events risks further widening the gap, as positions become more polarized—the ones at the top such as complex judgment requiring high-skill roles, and the ones at the bottom, like service roles resistant to automation.

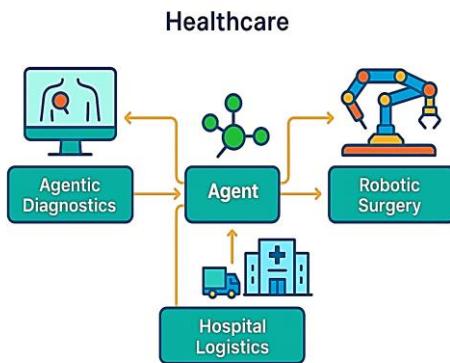
Figure 2. Impact's On Employment: Displacement Vs Transformation Vs Creation

3.2. Job Transformation

Anyway, displacement only reveals a fraction of the picture. The majority of the jobs will still exist only in a different way, as the result of the new human and machine collaboration forms. The term 'centaur' is often used to explain such a situation, analogically from chess, the game in which the combination of human and AI usually leads to better results than each of them independently. In this setup, the agentic automation serves as a partner rather than a replacement, supporting human decision-making with rapidity, accuracy, and large-scale information. The modification of the skills required for the job is needed for this change to happen. Workers will need to acquire the skills necessary for understanding, supervising, and working together with agentic systems. The abilities of digital literacy, data interpretation, and cross-disciplinary understanding will turn into necessities. The need for "AI translators" professionals who can connect technologically advanced systems with human objectives—will grow in various industries.

There are some skills that people have that machines can't just copy. Some of these are:

- Creativity: When you're creative, you come up with fresh ideas, think about how things used to be done, and accomplish things in a way that isn't normal.
- Problem-Solving: Figuring out how to deal with difficulties that are hard to understand and have goals that aren't clear or can change.
- Empathy and Social Intelligence: Machines can't build trust, motivate people to work together, or meet emotional demands. To do these things, you need to be able to comprehend and care about other people.


Agentic automation could lessen the value of ordinary work while increasing the value of human skills. The fundamental issue is helping workers get about, not prohibiting them from studying.

4. Sectoral Case Studies

Agentic automation will have many varied and complicated effects on different areas because each one has its own laws, skill needs, and ways of accomplishing things. By looking at some places, we could learn how change, movement, and new ideas affect the world around us. This part talks about money, laws, health care, transportation and logistics, and education and knowledge work. Technology that offers individuals more power is making a difference here first.

4.1. Healthcare

Healthcare is considered as one of the most promising areas where agentic automation can be implemented but at the same time one of the most sensitive. The complexity of patient care, the high stakes of clinical decision-making make it an area that is very suitable for the deployment of intelligent agents that can handle vast data streams. However, it is also a space where human oversight remains a must.

Figure 3. Healthcare

- **Agentic Diagnostics:** The development of systems that can independently perform medical image scanning, lab analysis, and patient history is going on non-stop. Unlike earlier diagnostic software, agentic systems can pool emergency cases, alert abnormal situations, and even suggest treatment plans that best fit the patient's context. Thus, a robot might detect the less apparent links among drugs and suggest new ones before a physician takes over.
- **Robotic Surgery Assistants:** The surgical robots are no longer only the precision instruments that are controlled directly by the surgeons. With the aid of agentic functions, they can recommend the best incision areas, change the position of the tool according to the sensor feedback in real time, and take care of other activities such as the winding of the suture; thus, the surgeon can be less burdened by the work.
- **Hospital Logistics:** Outside agentic systems are changing the way hospitals work. The agents can be in charge of the allocation of beds, the coordination of the use of equipment, the scheduling of staff, and the optimisation of supply chains for critical drugs, etc. These logistics agents help in reducing the administrative workload; thus, in resource-constrained environments, the agents help increase the efficiency of utilisation.

4.2. Transportation & Logistics

Transportation and logistics are some of the few sectors which demonstrate in a very clear manner how agentic automation can bring about a major change. The adoption of autonomous mobility, smart infrastructure, and digital supply chains is fundamentally changing the movement of both goods and people.

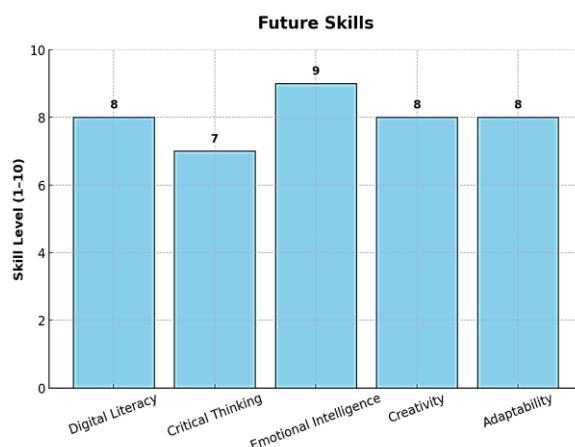
- **Autonomous Delivery:** One of the major developments in the transportation sector is the emergence of autonomous delivery. The range of agentic systems could be from self-driving trucks to last-mile delivery drones, which can carry out activities such as route planning, traffic adaptation, and negotiating delivery windows with customers. Unlike previous models of autonomous vehicles where there was a need for the close monitoring of the human part, agentic fleets are empowered to make decisions as a group, and this can be rerouting vehicles, sharing cargo loads, and avoiding bottlenecks.
- **Fleet Management:** This is one of the ways logistics companies are hiring agents that are capable of monitoring entire networks in real time in order to optimise fuel usage, plan maintenance, and reallocate the vehicles dynamically. These

systems not only can foresee the occurrence of a breakdown or shortage but they can also take action before a human manager steps in.

- **Warehouse Robotics:** These are the agentic robots that are increasingly being used in the warehousing sector and they are capable of doing more than just repetitive picking and packing. They do the tasks that require them not only to work in collaboration with each other but also to be able to dynamically reorganise layouts and coordinate with the logistics agents that are upstream and downstream.

4.3. Finance & Legal

Finance and legal services are knowledge-intensive industries that are a perfect example of the agentic automation trend, where the role of the assistant is gradually being replaced by the one of a substitute. Both sectors are internally heavily dependent on information processing, compliance, and analysis – all of which are increasingly automatable tasks.


- **AI-Driven Compliance:** In the finance field, agents can be in charge of the whole procedure, which includes supervising transactions, detecting fraud, and adjusting compliance protocols to new regulations. They not only point out deviations but also prepare the reports, and provide remediation suggestions in addition to that.
- **Contract Review:** AI is already employed in the legal profession for document reviewing, however, agentic systems take the process further by generating the drafts of standard contracts, pointing out the risk clauses, and even communicating with other agents to get the routine agreements only. This leads to a significant reduction in the time and effort required by paralegals and junior associates which is now compressed to almost zero.
- **Investment Analysis:** Financial advisors can be supported – and even supplanted – by agentic systems, depending on the continuously implemented market analysis strategies, portfolio rebalancing, and trade execution that are in line with client preferences. Such agents make it possible to offer targeted strategies on a large scale, thus putting the very concept of traditional advisory services under question.

5. Human Capital: Skills, Training, and Adaptation

As agentic automation advances, the primary concern for labor markets is not the transformation of employment, but the adaptability of the workforce. The most crucial thing to think about when considering if governments should use technology to make life better for everyone or let the gap between rich and poor get larger is human capital. This is what workers know, how skilled they are, and what they can do. We need to change the way we teach people skills, train them, and learn for life so that they can work with robots in the future.

5.1. Future Skills for an Agentic Era

Among the skills that will be most sought after in the future are those that are least likely to be done by machines. Three categories of skills stand out:

Figure 4. Future Skills

- **Digital Literacy:** The idea here is that employees, no matter their position or skills level, need to be very familiar with technology and the use of an agentic system to do so. This is not limited to basic computing skills but also includes activities

such as understanding data flow, AI output interpretation, and a proper acknowledgment of the limitations and security risks of autonomous systems. In addition, the scope of digital literacy includes cybersecurity sense, which enables people to be fully operational in environments where agents interact across networks without the risk of a security breach.

- Critical Thinking: To be more specific, certain routine systems will be handled through machines while humans are left with the task of supervising the output, evaluating the quality of suggestions given by the automation, and adding the context. This means that workers should be able to uncover, to test and to figure out the ethical implications of automated bias to practically doing it in ambiguous circumstances where even machines can have less variation.
- Emotional Intelligence: For example, empathy, communication, and leadership are some of the skills that will gain importance because of the development of artificial intelligence. Sectors such as healthcare, education, and customer support are the areas where these competencies will become very crucial and there is no way that agents can replicate them. Workers who are able to develop long-lasting relationships with the people they work with, are able to resolve conflicts and have the knack of bringing out the best in people will be the ones who have a point in the struggle of job competition between highly automated workplaces and human-like ones.

The skills of the future that are less related to technology are creativity, adaptability, and interdisciplinary problem-solving. The common denominator of these skills is their cooperation with, rather than rivalry against machine agency.

5.2. Continuous Learning Ecosystems

The initial few years of life where most knowledge is poured into the child characterize traditional education models. Such methods are insufficient in a world where technologies are changing fast and even whole professions can be reshaped within a period of 10 years. Consequently, societies will be required to develop continuous learning ecosystems, whereby upskilling and reskilling will be lifelong processes, such as they have become now. It means workers need flexible career paths, which will allow them to move in and out of training at any point throughout their professional lives. Using micro-credentials, modular learning, and competency-based certifications, workers can gain skills that are targeted to specific careers without having to go through long degree programs. Policies which are able to support lifelong learning on which the likes of tax credits for education or portable training accounts may be examples will have a pivotal role in bringing about this change in attitude. Learners need to be aware of the fact that technical skills would not suffice continuous learning. They need to be given opportunities on a regular basis to not only sharpen their soft skills but also change their thinking when confronted with situations involving human-machine collaboration. It will be the culture of growth where change is viewed as an opportunity to prove one's worth that will be of help in the adaptation process.

5.3. Company-Led Reskilling Initiatives

Employers will be instrumental in placing workers in the position to take charge in the future. Companies being on the frontline of the implementation of automation, not only have a moral responsibility, but also a strategic reason to allocate resources for the step-up of their team. Proactive companies are experimenting with initiatives that are reskilling-led by the firm. Those are examples of in-house academies, university partnerships, and well-defined programs for career changes. Along with employees' training in data analysis, AI supervision, and cooperative problem-solving, companies can achieve the retention of the institutional know-how while at the same time decreasing the costs of the staff turnover.

Just as important, reskilling is technical first but also has elements of soft skills such as leadership and adaptability to culture. Their skills set should also contain the confidence to be creative and to view collaboration as a tool that leads to new occupational roles together with the machines. Open communication about automation is a must for the construction of trust and engagement. On the other hand, collective models- such as sector-wide training consortia or public-private partnerships- can be a good strategy to combine resources for the requalifying projects for small and medium-sized enterprises (SMEs). It could well be that the state may be required to support or subsidize programs like this for the purpose of guaranteeing inclusivity.

6. Policy and Ethical Considerations

The emergence of agentic automation is not just a problem of economics and technology but a great challenge of policy and ethics as well. How societies manage this change will be the main factor that decides if automation will be a source of wealth above the current one or will pool up the already existing gaps in society. When machines become more independent, the issues of control, security, and justice that used to be peripheral concerns become the center of the picture. Hence, this part deals with the main

questions of politics and ethics that concern jobs, redistribution programs, the responsibility of the decision-making process, and fairness in the international community.

6.1. Universal Basic Income vs. Conditional Support

Agentic automation has unveiled the importance of the debate on the social safety net. Supporters of UBI (Universal Basic Income) made up of a flat payment to every member of society with the goal of ensuring the provision of minimum living standards regardless of employment, are positioned on one side of the discussion. Among other things, they mention that the idea of UBI can provide security in times of crisis, give people the freedom to study or start their businesses, and reduce the feeling of crisis in the unstable labor markets.

On the other hand, opponents of UBI are afraid of its huge fiscal costs as well as the possibility of lessening the drive for work. They, thus, propose the use of conditional support strategies such as income supplements targeting particular groups, retraining vouchers, or public works programs that connect benefits with active labor market participation as a replacement for UBI. The goal is to offer a balance of security and a range of incentives for continued engagement and adaptation. The matter of whether to go for UBI or conditional support is not simply about economics, rather it is political and cultural. A few societies may prefer universal entitlements so as to keep stability, while others might select targeted systems so as to save work-based social contracts. The most important thing is the creation of safety nets that can pass different tests, be fair, and respond quickly to changes in technology.

Figure 5. Ethical Risks

6.2. Ethical Implications: Agency, Accountability, Bias

Agentic automation is one of those technologies that produce different peculiarities in the moral space, because those systems are not even different—they just single out the autonomous decision to be executed. So, this provokes many questions, among which are the following:

- Agency and Accountability: When autonomous agents are given full authority, and as a result, they perform a wrong action, then, be it in medical assistance, financial administration, or legal review, the question arises—who are they? The developer, the deploying institution, or the system itself? Moral "black holes" where no one takes responsibility can be prevented by having very strong accountability frameworks.
- Bias and Fairness: Agentic systems get their biases from the data they are trained on and from the rules they make their decisions with. While working independently, these biases may escalate to a large scale, resulting in the unfairness of the hiring, lending, healthcare, or justice processes. Ethical governance necessitates the implementation of thorough auditing, openness, and complaint mechanisms.
- Human Oversight: Automation complacency is another risk associated with the human side, whereby the humans place the machine decision without proper checking. The policy may be required to impose the human-in-the-loop model in such a situation where the stakes are high to ensure accountability, and no harm will be done. Hence the ethical design and implementation of agentic automation have to be the outcome of the co-operation between the technologists, the ethicists, the regulators, and the communities affected.

7. Case Study: Agentic Automation in Practice

This part of the paper goes beyond the theoretical and looks at the actual scenarios where agentic automation has been practically implemented. The selected case is a hospital system powered by AI, wherein the hospital scenario that is designed for the

most part by the agentic diagnostics, the robotic assistance, and the automated logistics, patient care is being fundamentally changed by their seamless interaction. Such a figure demonstrates the potential held by the implementation of the self-sufficient machines in heavily populated areas that provide essential services, along with the consequences for the human workforce, acquired skills, and the way organisations are set up.

7.1. Outcomes

The deployment realised a wide range of benefits:

- Efficiency Gains: Less than the diagnostic turnaround times were reduced by almost 40%, with better triage for the urgent cases. The surgical teams noticed that the operation time was significantly reduced with the help of robotic assistance.
- Accuracy Improvements: The diagnostic agent reached the same precision as top specialists in radiology, especially in the cases of the early-stage conditions that are most often missed by humans. Along with that, the error rates have decreased in medication allocation and supply shortages.
- Patient Satisfaction: Patient surveys showed a positive patient experience with the implementation of this project, which resulted in shorter wait times and fewer hospital workflow difficulties. In addition, advanced technology also contributed to the hospital's prestige, thereby attracting more patients and funding.

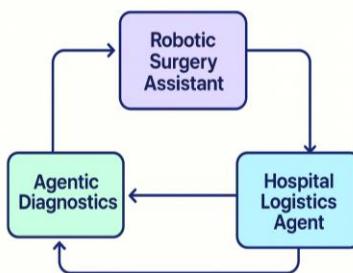


Figure 6. AI-Driven Coordination among Hospital Agents

7.2. Lessons Learned

several key lessons emerge from this case:

- Gradual Integration Builds Trust: Implementing agentic systems in phases, beginning with support roles and then moving up to core decision-making, allowed clinicians to slowly acclimatise to and receive the new tools.
- Human Oversight Remains Crucial: Although systems become more autonomous, it is still very important to have human accountability for ethical and legal rights. “Human-in-the-loop” models should be obligatory in all high-stakes sectors such as healthcare.
- Reskilling Must Be Proactive: Training should lead the deployment to avoid disruption. Continuous learning opportunities help employees to view technology as a facilitator rather than a rival.
- Equity and Access Matter: Big and well-funded hospitals can endure the agentic systems, while smaller or rural institutions may lag behind, thus, low-quality of care. The policymakers should solve the digital divide.
- Jobs Are Reconfigured, Not Erased: The hospital experience demonstrates that the principal labour problem is not the creation of fewer jobs but the emergence of different jobs that require new skills and the reassignment of responsibilities.

8. Conclusion

The phenomenon of agentic automation is an example of how the great saga of work and technology has a major turning point. It follows in the footsteps of mechanisation, electrification, and digitalisation, the revolutions which have gone before it, and just like them, it promises to be a maverick that will raise productivity exponentially and open up new vistas. However, it differs from the previous ones in that it not only automates the tasks but also controls the decision-making process. The change from manual to machine in this case is the root of the change and at the same time makes it both impactful and disturbing, breaking the assumptions that have been made on the limits of human and machine work. Considering all the studies on the matter, we can say that agentic automation is not necessarily negative to all. Despite the fact that some proletarian jobs, especially routine, clerical and middle-skill occupations, are going to be replaced by machines, the total elimination of jobs is not very likely. The main trend is that of job evolution, wherein the redefining of roles is the key element. In most of the redefined roles, human skills and abilities are blended with the use of different autonomous systems, while the “centaur model of hybrid intelligence” is referred to as one which is a combination of human and machine intelligence. That is why nurses, teachers, analysts, and lawyers are still going to be there, but at the same

time, they are going to be the ones who assign machines the tasks that are repetitive in nature and working towards problem-solving, judgement, and empathy, which are considered higher-order skills, is going to be their focus.

The special human advantage is in the areas which even highly trained machines fail to do – and these are creativity, ethics, and empathy. People can come up with new ideas through creativity and possibly new applications of already-existing systems. The help of ethics makes sure every decision is morally right, being based on principles and values that are over and above the facts. Also, empathy, which is a trust-building ingredient, love, care, and cooperation among the participants in the way that the machines that are not capable of experiencing any of this do not quite like, is a factor. Besides that, these personal qualities of the human race, when they are combined with versatility and the ability to learn throughout one's lifetime, remain the basis of one's human strength in an age of autonomous systems.

Yet, optimism must not be allowed to turn into complacency. The change to agentic automation is full of deep and serious risks if communities do not get ready. Displacement might raise the social divide to a higher level to an extent that workers in unstable industries or areas will be left without help. Prejudices hidden in self-governing systems might increase injustices in society. Differences between the rich and the poor worlds could become even greater because the gap between the fast green countries and those which are falling behind in the labor-intensive industries would be wider. The silver lining of agentic automation may become fouled with neglect and chaos if there is no intervention ahead of time.

References

- [1] Samdani, Gaurav, Kabita Paul, and Flavia Saldanha. "Agentic AI in the Age of Hyper-Automation." (2023).
- [2] Guntupalli, Bhavitha. "Data Lake Vs. Data Warehouse: Choosing the Right Architecture". *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, vol. 4, no. 4, Dec. 2023, pp. 54-64
- [3] Allam, Hitesh. "Sustainable Cloud Engineering: Optimising Resources for Green DevOps." *International Journal of Artificial Intelligence, Data Science, and Machine Learning* 4.4 (2023): 36-45.
- [4] Jani, Parth, and Sangeeta Anand. "Compliance-Aware AI Adjudication Using LLMs in Claims Engines (Delta Lake + LangChain)." *International Journal of Artificial Intelligence, Data Science, and Machine Learning* 5.2 (2024): 37-46.
- [5] West, Darrell M. *The future of work: Robots, AI, and automation*. Brookings Institution Press, 2018.
- [6] Katangoori, Sivadeep. "Jupyter Notebooks As First-Class Citizens in Cloud-Native Data Workflows". *Essex Journal of AI Ethics and Responsible Innovation*, vol. 4, June 2024, pp. 268-96.
- [7] Patel, Piyushkumar. "AI and Machine Learning in Tax Strategy: Predictive Analytics for Corporate Tax Optimisation." *African Journal of Artificial Intelligence and Sustainable Development* 4.1 (2024): 439-57.
- [8] Wajcman, Judy. "Automation: is it really different this time?." *The British journal of sociology* 68.1 (2017): 119-127.
- [9] Anand, Sangeeta. "Federated Learning for Secure Multi-State Medicaid Data Sharing and Analysis." *International Journal of Artificial Intelligence, Data Science, and Machine Learning* 5.3 (2024): 55-67.
- [10] McAfee, Andrew, and Erik Brynjolfsson. "Human work in the robotic future: Policy for the age of automation." *Foreign Affairs* 95.4 (2016): 139-150.
- [11] Balkishan Arugula. "Order Management Optimization in B2B and B2C Ecommerce: Best Practices and Case Studies". *Artificial Intelligence, Machine Learning, and Autonomous Systems*, vol. 8, June 2024, pp. 43-71.
- [12] Carlson, Matt. "The robotic reporter: Automated journalism and the redefinition of labor, compositional forms, and journalistic authority." *Journalism in an era of big data*. Routledge, 2018. 108-123.
- [13] Mohammad, Abdul Jabbar. "Time keeping and Labor Cost Optimization through Predictive Analytics and Environmental Intelligence." *International Journal of Emerging Trends in Computer Science and Information Technology* 4.3 (2023): 50-60.
- [14] Smith, Aaron, and Janna Anderson. "AI, Robotics, and the Future of Jobs." *Pew Research Center* 6 (2014): 51.
- [15] Patel, Piyushkumar. "The End of LIBOR: Transitioning to Alternative Reference Rates and Its Impact on Financial Statements." *Journal of AI-Assisted Scientific Discovery* 4.2 (2024): 278-00.
- [16] Linden, Tommy Carl-Gustav. "Algorithms for journalism: The future of news work." *The journal of media innovations* 4.1 (2017): 60-76.
- [17] Shaik, Babulal, Jayaram Immaneni, and K. Allam. "Unified Monitoring for Hybrid EKS and On-Premises Kubernetes Clusters." *Journal of Artificial Intelligence Research and Applications* 4.1 (2024): 649-669.
- [18] Rudman, Laurie A., and Peter Glick. "Prescriptive gender stereotypes and backlash toward agentic women." *Journal of social issues* 57.4 (2001): 743-762.
- [19] Lalith Sriram Datla. "Centralized Monitoring in a Multi-Cloud Environment: Our Experience Integrating CMP and KloudFuse". *Journal of Artificial Intelligence & Machine Learning Studies*, vol. 8, Jan. 2024, pp. 20-41
- [20] Allam, Hitesh. "Cross-Cloud Chaos: Strategies for Reliability Testing in Hybrid Environments." *International Journal of Emerging Trends in Computer Science and Information Technology* 4.3 (2023): 61-70.

- [21] Jani, Parth. "Document-Level AI Validation for Prior Authorization Using Iceberg+ Vision Models." *International Journal of AI, BigData, Computational and Management Studies* 5.4 (2024): 41-50.
- [22] Allam, Hitesh. "Resilience by Design: Site Reliability Engineering for Multi-Cloud Systems". *International Journal of Emerging Research in Engineering and Technology*, vol. 3, no. 2, June 2022, pp. 49-59
- [23] Parker, Sharon K., and Gudela Grote. "Automation, algorithms, and beyond: Why work design matters more than ever in a digital world." *Applied psychology* 71.4 (2022): 1171-1204.
- [24] Patel, Piyushkumar, and Deepu Jose. "Green Tax Incentives and Their Accounting Implications: The Rise of Sustainable Finance." *Journal of Artificial Intelligence Research and Applications* 4.1 (2024): 627-48.
- [25] Bastani, Aaron. *Fully automated luxury communism*. Verso Books, 2019.
- [26] Katangoori, Sivadeep. "JupyterOps: Version-Controlled, Automated, and Scalable Notebooks for Enterprise ML Collaboration". *Essex Journal of AI Ethics and Responsible Innovation*, vol. 4, Sept. 2024, pp. 268-99
- [27] Guntupalli, Bhavitha. "ETL Architecture Patterns: Hub-and-Spoke, Lambda, and More". *International Journal of AI, BigData, Computational and Management Studies*, vol. 4, no. 3, Oct. 2023, pp. 61-71
- [28] Lazear, Edward P. "Agency, earnings profiles, productivity, and hours restrictions." *The American Economic Review* 71.4 (1981): 606-620.
- [29] Balkishan Arugula. "Cloud Migration Strategies for Financial Institutions: Lessons from Africa, Asia, and North America". *Los Angeles Journal of Intelligent Systems and Pattern Recognition*, vol. 4, Mar. 2024, pp. 277-01
- [30] Eubanks, Virginia. *Automating inequality: How high-tech tools profile, police, and punish the poor*. St. Martin's Press, 2018.
- [31] "Automating IAM Governance in Healthcare: Streamlining Access Management With Policy-Driven AWS Practices". *Artificial Intelligence, Machine Learning, and Autonomous Systems*, vol. 8, May 2024, pp. 21-42
- [32] Sundar, S. Shyam. "Rise of machine agency: A framework for studying the psychology of human-AI interaction (HAI)." *Journal of computer-mediated communication* 25.1 (2020): 74-88.
- [33] Mohammad, Abdul Jabbar. "Real-Time Timekeeping Feedback Systems for Adaptive Productivity and Quality Coaching." *European Journal of Quantum Computing and Intelligent Agents* 7 (2023): 42-65.
- [34] Baird, Aaron, and Likoebe M. Maruping. "The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts." *MIS quarterly* 45.1 (2021): 315-341.
- [35] Guntupalli, Bhavitha, and Surya Vamshi ch. "Designing Microservices That Handle High-Volume Data Loads". *International Journal of AI, BigData, Computational and Management Studies*, vol. 4, no. 4, Dec. 2023, pp. 76-87
- [36] Jani, Parth. "Generative AI in Member Portals for Benefits Explanation and Claims Walkthroughs." *International Journal of Emerging Trends in Computer Science and Information Technology* 5.1 (2024): 52-60.
- [37] Allam, Hitesh. "Declarative Operations: GitOps in Large-Scale Production Systems." *International Journal of Emerging Trends in Computer Science and Information Technology* 4.2 (2023): 68-77.
- [38] Katangoori, Sivadeep, and Anudeep Katangoori. "Intelligent ETL Orchestration With Reinforcement Learning and Bayesian Optimization". *American Journal of Data Science and Artificial Intelligence Innovations*, vol. 3, Oct. 2023, pp. 458-8.
- [39] Lalith Sriram Datla. "Cloud Costs in Healthcare: Practical Approaches With Lifecycle Policies, Tagging, and Usage Reporting". *American Journal of Cognitive Computing and AI Systems*, vol. 8, Oct. 2024, pp. 44-66
- [40] Graham, Dorothy, and Mark Fewster. *Experiences of test automation: case studies of software test automation*. Addison-Wesley Professional, 2012.