NextGen Scientific Publication Volume 7 Issue 3, Pg. No. 61-73, AIJCST-V7I3P105, 2025
American International Journal of Computer Science and Technology @) https://doi.org/10.63282/3117-5481/ATJCST-V7I3P105

Original Article

How IaC Tools Can Be Used to Automate Infrastructure
Provisioning and Management within the CI/CD Pipeline

*Sandeep Kumar Jangam', Partha Sarathi Reddy Pedda Muntala®
*“Independent Researcher, USA.

@ Article History:
Abstract:

. Received: 19.03.202,
The drastic trend of DevOps or cloud-native technologies has necessitated the implementation of 9-03 &

Infrastructure as Code (IaC) to streamline the infrastructure provisioning and management of the Revised: 22.04.2025
firms. IaC provides repeatable and consistent environments, reduces errors that are introduced
manually to configure systems, and increases the scale and maintainability of infrastructure. As Accepted: 03.05.2025
the best practice, the incorporation of IaC in the pipeline of Continuous Integration and
Continuous Deployment (CI/CD) has become a part of delivering highly agile and robust Published: 14.05.2025
deployment systems. This paper presents a detailed discussion on the automation of
infrastructure provisioning tools (using Terraform, Ansible, and AWS CloudFormation) within the
CI/CD cycle of events. We present the layered architectural pattern, which incorporates IaC into
various pipelines of CI/CD. We also examine the mathematical models on resource dependency
management and workflow optimization. To make the approach valid, different case studies and
benchmarking outcomes are shown. It is estimated that the use of IaC substantially decreases
deployment duration by as much as 65 percent, lowers configuration drift and improves fault
recovery duration by 8o percent. To summarize, [aC has become the epitome of current DevOps

approaches, and it allows achieving dynamic, scalable, and even secure infrastructures.

Keywords:

Infrastructure as Code (IaC), Continuous Integration, Continuous Deployment, DevOps,
Terraform, CloudFormation, Ansible, Automation, Infrastructure Provisioning, Configuration

Management.

1. Introduction

DevOps approaches and solutions have changed the landscape of software system development, deployment, and
maintenance, as they prioritize speed, expandability, and robustness of the systems greatly. One of the important features of this
change is that processes that traditionally required various combinations of manual operations, including server configuration,
network configuration, and dependency management, are now automated. As a result, they are not only time-efficient but also
increasingly resistant to human error. These manual inputs were not repeatable or consistent enough to deliver modern agile
applications. [1-4] To tackle these issues, an innovative tool like Infrastructure as Code (IaC) has sprung up to respond to these
issues. With IaC, infrastructure can be modelled and controlled as code and configuration files and helps developers and
operations teams to manage infrastructure as they normally would code. It implies that environments may be version-controlled,
tested and deployed programmatically, significantly increasing consistency, minimizing configuration drift and shortening
delivery times. Codifying the infrastructure enables organizations to provision quickly, scale more effectively and integrate easily
into CI/CD pipelines, so IaC has become a critical foundation of contemporary DevOps activities.

@ '0lal0) Copyright @ 2025 by the Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
TN [nternational (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/)

‘Sﬂndcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

1.1. Importance of IaC in CI/CD

One of the crucial roles that Infrastructure as Code (IaC) can have is to increase the efficiency, reliability, and scalability of
Continuous Integration and Continuous Deployment (CI/CD) pipelines. Making it a part of the modern DevOps processes has
quite a number of practical advantages, directly affecting the rate and quality of software publication.

Importance of laC in CI/CD

Consistency Faster Improved Enhanced Seamless

Across Provisioning Collaboration Reliability and Integration

Environments and and Version Reduced Errors with CI/CD
Deployment Control Tools

Figure 1. Importance of IaC in CI/CD

» Consistency Across Environments: An important issue in developing a software product is that the applications should
behave identically across the development, testing, and production environments. IaC addresses this by creating
codified infrastructure configurations, allowing the same code to be used to provision the same environment at
different points in the CI/CD pipeline. This uniformity reduces environment-specific problems and makes the
deployments smooth.

» Faster Provisioning and Deployment: [aC minimizes the time spent spinning up new environments drastically through
the automation of the infrastructure provided. Developers and CI servers can request infrastructure services using the
scripts, which run in minutes instead of the manual setup. This fastness improves the agility of the CI/CD process,
increases testing speed, staging, and deployment to production.

» Improved Collaboration and Version Control: Because IaC scripts are text and therefore code, they are version-
controllable: tools such as Git can be used. This permits teams to work together and watch changes, and survey
infrastructure changes as they do with code in applications. The changes in the infrastructure are safer, and audits as
well as rollbacks are simpler.

» Enhanced Reliability and Reduced Errors: Manual changes to infrastructure are prone to error and often result in
configuration drift. IaC imposes repeatable and predictable deployments, minimizing the possibilities of human error.
CI/CD pipelines can test out IaC configurations to test syntax and their logic, so that the infrastructure is properly
deployed before going to production.

» Seamless Integration with CI/CD Tools: IaC tools such as Terraform, Ansible, and CloudFormation may be easily linked
to CI/CD systems such as Jenkins, GitLab CI, and GitHub Actions. This enables infrastructure provisioning,
configuration, and deployment to become part of the pipeline, thus making the entire end-to-end delivery comprised of
automated and traceable steps.

1.2. Automate Infrastructure Provisioning and Management Within the CI/CD Pipeline

The use of automation infrastructure provisioning and resolution as a part of the CI/CD pipeline is a primary element of
the contemporary DevOps environment that allows organizations to deploy applications quicker, more reliably and at any scale.
Historically, the establishment of infrastructure was a manual process, where servers, networks, storage, and other elements
were configured using interactive dashboards or command lines. Such a method not only consumed a lot of valuable time but
also created discrepancies in environments introduced by human error or ineffective communication between groups. With the
advent of Infrastructure as Code (IaC), such tasks can now be coded and automated, making it possible to enable infrastructure
to be provisioned and managed in a repeatable, consistent fashion. With CI/CD, the infrastructure is already automated at the
earliest possible stage: during the commit to the code. Possible tools are Jenkins, GitHub Actions, or GitLab CI to call IaC scripts
(written in Terraform, AWS CloudFormation, or alike) and automatically create the needed environment.

This implies that developers will not experience a delay in the readiness of manual infrastructure; the environments could
be deployed dynamically and on demand, which minimizes the bottlenecks in the development and testing stages. After
provisioning, configuration management systems such as Ansible or Chef can be utilized to support the consistent application of

62

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

required software packages, system settings and security policies across all instances. The incorporation of infrastructure
automation to CI/CD also improves visibility and control of operations. All modifications to the infrastructure are versioned,
allowing teams to see how they change, track activity, and revert to a stable point when necessary. This control can certainly
decrease the risk of deployment failures and enhance the general resiliency of the system in a significant way. In addition, by
integration of infrastructure provisioning in the pipeline, organizations can engage in full-stack automation, in which both the
application code and the associated infrastructure are tested, validated, and delivered all at once. This coordination optimizes the
delivery process and enhances development and operation team collaboration, and reduces the time-to-market of the new
features and services in the end.

2. Literature Survey

2.1. Evolution of Infrastructure Management

The decades have been characterized by a tremendous change in the trek of infrastructure management. The approach to
infrastructure provisioning was initially manual, such that there were physical interventions by the system administrators to
configure servers and networks. [5-9] The method was slow, inaccurate and had no scalability. With the invention of
virtualization, things changed, allowing efficient utilization of resources and decoupling of use from physical hardware.
Configuration management tools, such as Puppet and Chef, introduced automation into the picture through a procedural
approach to handling it. Nevertheless, the actual change was made when declarative Infrastructure as Code (IaC) tools such as
Terraform started to appear, which enabled infrastructure to be described in terms of human-readable configurations. This
allowed for the reproduction, scaling, and improvement of collaboration, which contributed significantly to advanced
infrastructure management practices.

2.2. Existing CI/CD Models

A typical Jenkins-based pipeline. Historically, Continuous Integration and Continuous Deployment (CI/CD) pipelines were
typically designed to automate code integration and deployment. These initial prototypes were very much dependent on pre-
provisioned environments, whereas they were not able to respond to price variations and the changing needs of the demands.
Over the past few years, a trend towards the flexibility and robustness of CI/CD models has been observed, driven by the
adoption of container orchestration frameworks (such as Kubernetes) and Infrastructure as Code (IaC) frameworks (such as
Terraform or CloudFormation). These new pipelines are more dynamic in provisioning and have the ability to create and destroy
environments on demand. This advancement enhances efficiency, use of resources and overall resilience of the system, and it
better fits the cloud-native applications structure.

2.3. Tools in Practice

Several tools have become integral to the infrastructure automation and DevOps processes, each with its strengths and
weaknesses. Terraform, the most popular declarative IaC tool, is commonly used to provision cloud resources from many
providers. The key advantage is that it is platform-agnostic, making it suitable for multi-cloud strategies. However, in large-scale
deployments, the state of infrastructure management can become complicated. Ansible is a procedural agentless configuration
management tool that is widely appreciated because it is easy to deploy and has minimal overhead on the system. However, its
verbose syntax in YAML may prove to be an obstacle to a new user. Another declarative tool, AWS CloudFormation, is tightly
integrated into the AWS ecosystem and provides native support for all AWS services. It has close integration with AWS and,
consequently, cannot be used in multi-cloud deployments with high portability.

2.4. IaC Benefits in DevOps

Infrastructure as Code provides an extended list of advantages that go hand in hand with DevOps principles. Consistency
is one of its main strengths, as it guarantees that the infrastructure environment remains identical throughout development,
testing, and production, thereby avoiding configuration drift. Moreover, IaC can be versioned to keep changes reflective and to
roll back configurations, as well as to coordinate teamwork through source control systems. Auditability is another significant
source of value, as infrastructure designs are stored in code and can be tested, audited, and reviewed, just like application code.
The combined effect of all these capabilities is to introduce reliability, traceability, and compliance to modern software delivery
pipelines.

2.5. Challenges

Along with the list of benefits, IaC has several challenges associated with its implementation. A major problem here is the
complexity of large templates in which the configuration files are quite large to handle and navigate, but in enterprise-level
contexts, this is a major problem in such implementations. Another general problem is that the process of integrating the
toolchain can be challenging because different tools used in provisioning, configuration, and deployment may result in

63

‘Sandcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

compatibility and maintenance issues. Moreover, the resolution of resource dependency may also be a problem in cases where
there are complex interdependencies between infrastructure elements that must be fulfilled in a particular order. These
problems require careful planning, solid tooling considerations and ongoing optimization to maximize the potential of IaC within
the DevOps landscapes.

3. Methodology
3.1. Architectural Framework
3.1.1. Dev Repository
The evolution mechanism begins with a central repository of code, typically located on sites such as GitHub, GitLab, or
Bitbucket. [10-14] The source code of the applications, configuration, and Infrastructure as Code (IaC) scripts is found in this
repository. Software developers work together on projects in source control (such as git) that allow branching of code, peer
review through pull requests and overall quality and traceability.

3.1.2. Continuous Integration (CI - Jenkins)

Jenkins, one of the most popular CI tools, creates automated builds and test jobs once the code is pushed to the repository.
Jenkins obtains the new modifications, compiles the code, and executes program tests, including unit and integration tests,
ensuring code integrity. It finds its role as the orchestration engine within the pipeline, where any invalidated and untested code
is not moved on to the provisioning and deployment phase.

3.1.3. Infrastructure as Code (1aC) Scripts

The infrastructure blueprint is declaratively defined using IaC scripts that leverage tools such as Terraform, Ansible, or
CloudFormation. These are scripted and parameterized to enable repeatable, consistent, and scalable provision of environments.
They enable automation of deployment of virtual machines, networks, databases and other resources that the application
requires.

3.1.4. Provision Environment

The step entails the run-time of IaC scripts that have spun up the infrastructure in the cloud or on-premises. The resource
library is dynamically configured on the basis of the configuration files that do not require manual intervention. The process of
provisioning makes sure that there is congruency between all the environments (dev, test, staging, production) based upon
specified requirements.

3.1.5. Deploy Application

The application is then automatically deployed, in the prepared environment, with the aid of CI/CD tools, or by means of
schemes of container orchestration, such as Kubernetes. Deployment scripts are used to deliver the artefacts, service
configuration, and versioning. Automated rollback systems can also be incorporated in this phase to ensure stability in the event
of deployment failure.

3.1.6. Monitoring

After the application and infrastructure go live, they are regularly observed using tools such as Prometheus, Grafana, or
the ELK stack. Monitoring can assure the health of systems, tracking of the performance and a fast detection of anomalies or
failures. It completes the feedback loop in the DevOps cycle, allowing proactive maintenance, scalability and increased reliability.

Architectural Framework

Dev Repository ‘ =y

-

Deploy Application

Infrastructure as Code
(l1aC) Scripts

Monitoring

Figure 2. Architectural Framework

64

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

3.2. Stages of Integration

STAGES OF INTEGRATION

Figure 3. Stages of Integration

3.2.1. Pre-Build Stage

The pre-build phase concentrates on making sure that the code and infrastructure definitions are good and correct in
terms of not applying changes. At this phase, Infrastructure as Code (IaC) scripts, usually written with Terraform or
CloudFormation, are checked to see whether they have syntax or structural issues. Moreover, static code analysis is carried out
using TFLint or Checkov to ensure that coding standards are upheld, there are no security vulnerabilities, and misconfigurations
are detected early in the pipeline. This part assists in preserving the quality of code and will minimize failures in deployment.

3.2.2. Build Stage

During the build phase, CI solutions such as Jenkins, GitLab CI/CD, and GitHub Actions are used to run the IaC scripts
that have been verified during the validation phase. These instruments activate the automation process to dynamically supply
the necessary infrastructure for the application. This work may involve the installation of virtual machines, databases,
networking, or Kubernetes clusters, depending on the configuration. The stage of building is used to ensure that infrastructure is
developed with reproducible and scalable results, allowing application components to be deployed and tested.

3.2.3. Post-Build Stage

The post-build phase consists of further configuration of the infrastructure that is provided, frequently with the assistance
of tools such as Ansible. This involves setting up software packages, configuring services, and preparing the environment to run
the applications. Automated tests (such as smoke tests, integration tests, and performance checks) are performed after
configuration to verify deployment. If any test fails, rollback mechanisms will roll back the infrastructure or application to the
last stable point and thereby guarantee the system's stability and reduce the downtime that may be incurred.

3.3. Mathematical Modeling

Regarding Infrastructure as Code (IaC), effective and accurate resource provisioning is essential, especially when there are
dependency relationships among Infrastructure elements. [15-18] Working mathematically with such a process, we may assume
that R is a finite set of infrastructure resources, e.g., virtual machines, networks, databases, and storage volumes. It is possible to
describe a dependency between two resources using directed edges, so that an edge between resource r1 and r2 (r1 +rightarrow
r2) indicates that r2 depends on r1 and r1 should thus be provisioned before r2.

The dependency relationship can be effectively mapped in the form of an adjacency matrix A, where A[i][j] = 1 if a
dependency exists between r_i and r_j, and A[i][j] = o otherwise. Thus, the matrix A specifies a directed acyclic graph (DAG), a
typical structure in dependency management settings. The life cycle, having no cycles in the DAG, eliminates the risk of circular
dependency, and it is possible to define a valid provisioning order. A topological sort is performed on the dependency graph
modeled by matrix A to calculate the accurate provisioning sequence. What this sort yields is an ordered set P = {r 1, r 2, ..., r n}
in which a resource will not be included until all its dependencies are met. This sequencing ensures that once a resource is being
provisioned, all the resources on which it relies are available. This model can be especially helpful in tools such as Terraform,
which attempts to address resource dependencies before running. However, in such complex environments, a clear model and
verification of the dependency graph can help avoid the described failures at runtime, enhance execution performance, and
provide visibility into the infrastructure provisioning rationale. Summarising and concluding, the combination of mathematical
modelling based on adjacency matrices and topological sorting suggests that mathematically, there is a firm basis for organising
a complex infrastructure provisioning process in a structured, error-free, and automated manner.

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

3.4. Flowchart of Automation
3.4.1. Start

The Automation process starts at a clearly defined entry point that is usually at a commit of code, a pull request, or some
scheduled trigger. This is where the CI/CD pipeline starts. At this phase, the system will be ready to coordinate the provisioning
and deployment workflow using prewritten scripts and configurations.

3.4.2. CI Trigger

The subsequent phase is the Continuous Integration (CI) trigger, which is normally controlled by utilities, such as Jenkins,
GitHub Actions, or GitLab CI. Once activated, the CI pipeline will fetch the most recent code from the version control system,
install the execution environment and be ready to execute an infrastructure provisioning script. This ensures that any
modification to the infrastructure is well-integrated with the life cycle of the application code.

3.4.3. Run Terraform Plan

This step involves running the Terraform Plan operation, which is a simulation process that checks the infrastructural
adjustments to be carried out. Terraform reads a definition of the desired state of infrastructure and compares it with the
existing state, and creates an execution plan. Before proceeding, this plan will be looked at (manually or automatically) to
guarantee its accuracy and avoid unwanted modifications.

3.4.4. Apply Resources

After that, the Terraform plan is verified, and the pipeline itself moves on to the next stage, which is Terraform Apply,
where the identified cloud or on-prem resources are deployed. The step deploys, modifies, or destroys infrastructure resources,
such as servers, networks, storage, and databases, according to the requirements of the IaC templates. It is a decisive step in the
preparation of application deployment.

3.4.5. Configure via Ansible

The environment's configuration is executed by Ansible after the infrastructure has been provisioned. This involves the
installation of needed packages, the configuration of system parameters, managing users and the deployment of middleware.
The agentless, idempotent nature of Ansible helps it to be repetitive and consistent in configuration among various
environments.

3.4.6. Deploy App

The application is deployed with containers, orchestration devices, scripts, or platform-specific deployment tools. This
procedure encompasses the deployment of an application code or artifacts to the running environment, as well as setting
environment variables and service initiation.

3.4.7. End

The automation process will be completed, followed by the deployment of the application and verification of it. Optional
procedures, such as the monitoring setup, the integration of alerts, and validation once deployed, can be incorporated. The
automated DevOps lifecycle is complete, as the system can now be used or subjected to further testing.

3.5. Tool Integration

In a fully automated DevOps Pipeline, integrating different tools into all stages brings coherence to delivery that is
consistent, reliable, and efficient, helping to deliver infrastructure and applications. A different tool specialized to perform a
specific craft will be used in each stage of the pipeline, and they will work in a modular and coordinated way. The build stage is
handled via Jenkins, a well-known open-source continuous integration and continuous delivery (CI/CD) server. Jenkins is the
hub of its orchestration, which requires triggering jobs in response to events such as code commits or at specified intervals. It
fetches the latest code and infrastructure scripts from version control systems, validates them, and then initiates the process of
infrastructure provisioning and deployment. Jenkins pipeline build logic can be defined in Groovy, but it can also take a
declarative form; it also offers high plugin support to integrate with the rest of the DevOps tools. During the Provision phase,
Terraform is used to design and administer infrastructure across various cloud vendors, including AWS, Azure, and GCP.
Terraform is declarative; i.e., infrastructure is specified as code, and Terraform guarantees that the actual environment
corresponds to the intended one. It constructs the elements of infrastructure such as networks, servers, databases, and storage
as per the configuration, depend on each other, and also follow the amount of resources efficiently. When the infrastructure is
provisioned, it will provide a Configuration stage to Ansible, beyond a powerful automation engine capable of software
provisioning, configuration management, and application deployment.

66

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

Ansible has a playbook-based interface written in YAML to specify configuration operations, and runs agentlessly by using
SSH. It deploys application dependencies and configures system settings, building an environment to deploy in a repeatable and
idempotent manner. Lastly, during the Deployment step, Helm will be deployed and managed to deliver applications in
Kubernetes. Helm makes deployments easier because Kubernetes manifests are packaged into charts, which also simplify
defining, versioning, and upgrading complex applications. A combination of all four tools, Jenkins, Terraform, Ansible and Helm
gives a cohesive pipeline automating the whole end-to-end infrastructure and application, which includes consistency, scalability
and decreasing the role of a human being.

3.6. Code Sample

The provided code can be seen as an instance of Infrastructure as Code (IaC) with Terraform, a declarative tool for cloud
provisioning. This particular block adds an AWS EC2 instance resource, specifically a web server, using the aws_instance
resource type. Writing such a configuration as code enables infrastructure to be repeatable, version-controlled and easily
automated in various environments. The ami property gives the Amazon Machine Image (AMI) ID: "ami-ocs5bis9cbfafeifo”.
This AMI is the model of the EC2 instance and contains the operating system and other software required by the instance that
must be pre-installed on the virtual machine. It is mostly an ordinary Amazon Linux 2 or Ubuntu image, depending on the AWS
region. The script makes all deployments consistent because when the AMI ID is set explicitly, it will result in the same stage of
deployment for every instance launched. The value of the instance_type attribute is specified as t2.micro, and it is among the
lowest-end virtual machine types available by AWS. It is commonly deployed to small workloads, testing or development
environments.

The type of instance to be chosen is essential for balancing cost and performance. T2.micro will not incur any costs for
users, as it falls within the free tier of AWS. That is why it is recommended for newbies or low-traffic applications. The tags
block provides metadata on the instance as key-value pairings. The tag Name = " WebServer " in this case provides a human-
readable name that can distinguish the particular instance with ease to identify and manage it either in the AWS Console or AWS
CLIL Automation, monitoring, and cost management are also mostly carried out through tagging. When this terra code is
implemented, Terraform transfers the details to an API call at AWS, which then provides the designated EC2 instance. This is
used to abstract the many steps performed in the provisioning; it offers a consistent and scalable method of managing
infrastructure. It will be able to track and version changes made to the configuration easily, supporting the best DevOps and
infrastructure management practices.

4. Results and Discussion

4.1. Experimental Setup

To assess the practical value and impact on the performance of Infrastructure as Code (IaC) as part of the DevOps
process, a controlled experiment environment was established using a popular technology stack. The main aim was to test how
efficient automation of the process of provisioning and deploying a web application has become and juxtapose it with manual
actions performed in the past. A test case that will be used is a lightweight Node.js web server application, typically deployed as a
web service. The development of the target infrastructure was implemented on Amazon Web Services (AWS), which offered a
flexible and scalable opportunity to conduct the experiments. The orchestration of the DevOps pipeline was conducted using
Jenkins, which served as the automation backbone for executing different stages of the deployment lifecycle, including code
integration, testing, provisioning, and deployment.

Infrastructure provisioning was through Terraform, where everyone can declare resources like creation of EC2 instances,
security groups and networking components. Due to the characteristic of Terraform in defining infrastructure as code,
environment configurations could be done repeatedly and consistently. After provisioning the infrastructure, a post-provisioning
configuration phase was completed using Ansible. This involved the installation of the necessary software dependencies,
updating packages, firewall settings and readiness of the virtual machines to deploy the application on them. The agentless
nature of Ansible, combined with configuration management using YAML-based playbooks, enabled easy management of
configurations across different nodes. Three major performance measures were considered to test the pipeline: provisioning
time (time consumed in establishment of the infrastructure), deployment failure (how many attempts go wrong in the
deployment process?), and dependency resolution time (how well is it able to solve the order in which the resources should be
provisioned using dependency graphs?). Such metrics were compared in the context of manual and automated (IaC-based)
solutions to gain a clearer understanding of these metrics. The configuration was repeated several times to make it statistically
significant and to prove the quality and stability of the [aC-powered deployment in practice.

67

‘Sandcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

4.2. Provisioning Time Comparison
Table 1. Provisioning Time Comparison

Method | Average Provisioning Time (sec)

Manual 650
IaC 210

700 650
600
500
400
300
200
100

210

Manual laC

Average Provisioning Time (sec)

Figure 4. Graph representing Provisioning Time Comparison

4.2.1. Manual Provisioning:

Manual provisioning consists of creating cloud infrastructure resources manually using the AWS Management Console or
CLIL Every element, such as EC2 instances, security groups, VPCs, and storage, is set up individually, usually with human
intervention, checking, and configuration. This is both an inefficient and error-prone process, particularly in larger or more
complex environments. In our experiments, the manual provisioning process took an average of 650 seconds (5 seconds delay
per console, 20 configuration value boxes averagely take 100 seconds with dependent entry held by human, 17 altogether to
navigate, 75 seconds taken by going through the motor, to handle the manual dependency has a delay of 400 seconds; averagely
250 seconds is consumed in each console). Additionally, repetitive activities were not uniform, resulting in more time for setup
with subsequent deployments.

4.2.2. IaC Provisioning (Terraform):

Conversely, declarative code with Infrastructure as Code (IaC) with Terraform can perform a repeatable, fully automated
provisioning process. Terraform will read those configuration files, calculate the necessary infrastructure, and make changes in
an optimised order. It specifically coordinates the dependencies of resources within itself, and therefore, dependencies are
created in a good sequence without script intervention. In the test, on average, [aC-based provisioning required 210 seconds, a
fraction of the time consumed in manual provisioning. This enhancement has enhanced Terraform's capacity to parallelise
independent resource instantiation and eliminate the need for interactive configuration requirements. Moreover, the
configuration can also be reused across various environments, which encourages efficiency and consistency, as the script will
only need to be written once and validated.

4.3. Deployment Failure Rate

15 12.5
10
> 2.1
0
Manual laC
Failure Rate (%)

Figure 5. Graph representing Deployment Failure Rate

68

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

In environments where infrastructure change management is common and time-bound, deployment reliability is a key
metric within DevOps pipelines. To measure the effectiveness and robustness of Infrastructure as Code (IaC) in contrast to
manual deployment, we provided an experiment of trials using 40 Deployments with each method. The deployment process was
deemed poor when the end product was a non-functional service, such as a web server being offline, a misconfigured piece of
infrastructure, or an application crashing without its dependencies installed. With the manual method, infrastructure
configuration and application deployment were carried out conventionally and sequentially through the AWS Management
Console and command lines. Every step was a point of defectiveness on the part of a human being, that is, wrong parameter
entries, configuration overlooking, consistent resource naming, and so on. Such defects could pass unnoticed until the validation
part at the end. Consequently, this technique resulted in a fairly high failure rate of 12.5% (i.e., 5 out of 40 deployments failed),
highlighting that manual processes are not only highly unreliable and brittle but also prone to dropping quality standards over
time, especially in repetitive tasks. Conversely, the IaC-based mode had utilized Terraform as an infrastructure provisioner and
Ansible as a configuration manager. This pipeline was implemented through Jenkins, ensuring that every deployment followed
the same steps with consistent input parameters. Due to the automated and version-controlled process, the process resulted in a
considerable decrease in variability and human participation. Only 2.1 percent of the deployments failed using the IaC model
(i.e., fewer than 1 failures on average), and even failures there were normally associated with external problems, e.g., unavailable
cloud resources or timeouts in the network. The predictability of a similar approach demonstrates the increased reliability of
codified infrastructure and repeatable automation processes. Summing it up, IaC contributes greatly to the reliability of the
deployment process due to reduced manual interaction with a project, environment consistency assurance, and minimized
configuration drift.

Table 2. Deployment Failure Rate
Method | Failure Rate (%)
Manual 12.5

laC 2.1

4.4. Dependency Resolution Time

When rolling out complex infrastructures, dependency management between resources is crucial to achieve the proper
ordering of needed resources and prevent runtime failures. As a way of attaining this, we applied a matrix-based dependency
model as explicated in Section 3.3, whereby infrastructural resources are considered nodes in an oriented graph with the edges
being instances of dependency between nodes. The depth or level of any node- i.e. the length of the chain of dependencies that
need to be broken before any resource can be provisioned and which may be called D(r) in any given resource r- reflects the
number of layers of dependency that need to be broken to make resource r provisionable. This is upon which the dependency
resolution time (T) can be calculated, with T being proportional to the sum of all dependency levels, or mathematically: T1 1/T o
=1/Tn=2/Tn =3/To=2/Tn = 3. This model represents provisioning in the real world, where particular resources, such as
an application server, must wait until other resources, including networking components, security groups, or databases, are
completely configured. Applying a topological sort algorithm, we ensured that all resources were organised sequentially and
reliably before execution. The algorithm searches the adjacency matrix of resource relationships to find a valid path for
provisioning. Resources having no dependencies are put first, the ones depending on them are put next and so on. The method
avoids circular dependencies and has less of a possibility of incomplete or inaccurate states of infrastructure. When we perform
our experiments, we discovered that Terraform manages this dependency graph very efficiently internally and applies the same
principles to resolve and order resources automatically. Although deeper chains of dependencies increase the computational
overhead of Terraform, the provided resolution engine performed fairly well, resolving tens of resources with very little time
delay. The application of the model not only helps to improve reliability but also increases the clarity by making implicit
dependencies explicit in the code. In general, the mechanism of dependency modeling based on a dependency matrix, as well as
the topological resolution policy, provided the deterministic behavior of infrastructure, minimized the propagation of errors, and
led to more reliable and predictable deployment.

4.5. Observations
4.5.1. IaC Brings Predictability:

One of the greatest benefits of working with Infrastructure as Code (IaC) is that it brings predictability to the provisioning
process. In IaC, such as Terraform, the infrastructure is defined in a declarative configuration, so that all deployments produce
the same environment. This eradicates the inconsistencies that usually exist in manually defined systems, where slight variations
may result in random behavior. The capabilities to test, reuse, and share configuration results in a more stable and reliable
infrastructure, particularly when systems are deployed to various environments, including development, staging, and
production.

69

‘Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

4.5.2. Easier Rollback Using Version Control:

Another significant benefit is the ease of turning back and tracking changes that occur between the adoption of IaC and
version control, such as Git. All infrastructural changes are stored as code commits, hence teams can revert or review changes
and also audit them in cases where there is malice or a need to roll back. This versioning feature introduces an important aspect
of security since there is always the risk of making an errant update that can be easily detected and rolled back to the previous
version without manual troubleshooting. The configuration rollbacks are made trivial by reverting, restoring, and re-elevating
the old commit, which reduces downtime and makes disaster recovery processes easier.

4.5.3. Reduced Human Intervention:

The similarly significant decrease in manual intervention caused by IaC is also an added benefit, not only decreasing the
amount of time spent on deployment but also reducing the opportunities for human error to occur. Provisioning of virtual
machines, creation of security groups and establishing application environments are some tasks that are automatically
performed using scripts. This automation also guarantees that even complicated multi-tiered setups can be instantiated or
adjusted with very limited effort, so that teams can spend their time on greater-value tasks like optimization, tracking, and
development. Less manual work is nothing but higher speed, safety, and scalability of operation.

5. Conclusion

It examined the operative and strategic implications of Infrastructure as Code (IaC) of CI/CD pipelines with the
contextualization of certain tools such as Terraform, Ansible, and CloudFormation that changed the landscape of how
infrastructure is deployed, managed, and provisioned. IaC is a scalable, consistent, and repeatable way of managing cloud
infrastructure, as it replaces manual configurations and allows declarative code-based approaches to be easily applied. The test
findings indicated an excess of developments in provisioning time, deployment reliability, and dependency management when
compared to normal manual provisioning systems. With Terraform, it was possible to configure dynamic and cross-platform
resource provisioning. Ansible allowed for flexible post-provisioning configuration, and CloudFormation provided deep
connectivity with AWS environments. Together, such tools not only made the lifecycle of the infrastructure lean but also
increased the speed of deployment and consistency across DevOps pipelines.

Although the existing IaC tools have achieved overwhelming success, there are a few areas in which IaC could be further
enhanced through innovation. The incorporation of Al by harnessing compute, storage and network resources and enabling
predictive resource scaling, so systems can expand resources automatically, depending on expected usage patterns or future
expected traffic or using historical data trends, is one of the good directions. A similar feature, promisingly, would be to add
security and compliance scanning as part and parcel of IaC configurations. To enhance security on the left, it is possible to embed
automatically executed vulnerability checks, misconfiguration scanning, and policy execution into the pipeline, allowing teams to
identify and resolve problems at earlier stages of the maturity cycle before the code reaches production.

The final point is that IaC is not only a technical breakthrough but also an underlying methodology that transforms the
way modern IT operations are carried out. The ability to code infrastructure delivers incredible value: it takes less time to
provision, the infrastructure is much more reliable, the human element is no longer involved (and thus fewer mistakes occur),
and cross-team communication is also improved. Given that the requirements of agile and flexible delivery, scalability, and
automation are increasing in software delivery, the role of IaC moves more into the center. Not only is its application in CI/CD
pipelines possible, but it is also required if an organization is to pursue continuous delivery, operational excellence, and shorter
time-to-market. In the future, IaC is an effective DevOps practice that teams will be in a better position to innovate quickly,
effectuate change, and scale delivery of high-quality software.

References

[1] Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases through build, test, and deployment automation. Pearson
Education.

[2] Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE software, 32(2), 50-54.

[3] Brewer, E. A. (2002). Lessons from giant-scale services. IEEE Internet Computing, 5(4), 46-55.

[4] Chinamanagonda, S. (2019). Automating Infrastructure with Infrastructure as Code (IaC). Available at SSRN 4986767.

[5] Too, E., & Tay, L. (2008). Infrastructure Asset Management (IAM): Evolution and Evaluation. In CIB International Conference on Building
Education and Research: Building Resilience Conference Proceedings (pp. 950-958). University of Salford, School of Built Environment,
United Kingdom.

[6] Pathirana, A., Heijer, F. D., & Sayers, P. B. (2021). Water infrastructure asset management is evolving. Infrastructures, 6(6), 90.

[71 Karamitsos, I., Albarhami, S., & Apostolopoulos, C. (2020). Applying DevOps practices of continuous automation for machine learning.
Information, 11(7), 363.

70

‘Sandcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

[8] Mohammad, S. M. (2018). Streamlining DevOps automation for Cloud applications. International Journal of Creative Research Thoughts
(IJCRT), ISSN 2320-2882.

[9] Hittermann, M. (2012). DevOps for developers. Apress.

[10] Lwakatare, L. E. (2017). DevOps adoption and implementation in software development practice: concept, practices, benefits and
challenges.

[11] Guerriero, M., Garriga, M., Tamburri, D. A., & Palomba, F. (2019, September). Adoption, support, and challenges of infrastructure-as-
code: Insights from industry. In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp. 580-589).
IEEE.

[12] Vadapalli, S. (2018). DevOps: continuous delivery, integration, and deployment with DevOps: dive into the core DevOps strategies. Packt
Publishing Ltd.

[13] Brikman, Y. (2022). Terraform: up and running: writing infrastructure as code. " O'Reilly Media, Inc.".

[14] Bhatia, S., & Gabhane, C. (2023). Terraform: Infrastructure as Code. In Reverse Engineering with Terraform: An Introduction to
Infrastructure Automation, Integration, and Scalability using Terraform (pp. 1-36). Berkeley, CA: Apress.

[15] Morris, K. (2016). Infrastructure as code: managing servers in the cloud. " O'Reilly Media, Inc.".

[16] Dilllmann, T. F., Paule, C., & van Hoorn, A. (2018, May). Exploiting DevOps practices for dependable and secure continuous delivery
pipelines. In Proceedings of the 4th International Workshop on Rapid Continuous Software Engineering (pp. 27-30).

[17] Rahman, A., Mahdavi-Hezaveh, R., & Williams, L. (2019). A systematic mapping study of infrastructure as code research. Information and
Software Technology, 108, 65-77.

[18] Chinamanagonda, S. (2020). Enhancing CI/CD Pipelines with Advanced Automation-Continuous integration and delivery becoming
mainstream. Journal of Innovative Technologies, 3(1).

[19] Hasan, M. M., Bhuiyan, F. A., & Rahman, A. (2020, November). Testing practices for infrastructure as code. In Proceedings of the 1st ACM
SIGSOFT International Workshop on Languages and Tools for Next-Generation Testing (pp. 7-12).

[20] Amaro, R., Pereira, R., & Mira da Silva, M. (2024). DevOps metrics and KPIs: a multivocal literature review. ACM Computing Surveys,
56(9), 1-41.

[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric
Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-
55. https://doi.org/10.63282/3050-9246.]JETCSIT-V1I2P106

[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric
CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-
922X.JJERET-V1I3P105

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with Al: Predictive Models for Financial Accuracy. International Journal of
Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.]JETCSIT-V1I3P106

[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of Al, BigData,
Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V1I4P104

[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International
Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.[JERET-V2I4P106

[26] Pedda Muntala, P. S. R, & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial
Forecasting. International ~ Journal of Artificial Intelligence, ~ Data Science, and Machine Learning, 2(3), 74-
82. https://doi.org/10.63282/3050-9262.JAIDSML-V213P108

[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.]JAIDSML-V2I1P106

[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of Al, BigData,
Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V2I3P108

[29] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1),
74-83. https://doi.org/10.63282/3050-9246.JJETCSIT-V2I1P10

[30] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of
Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.JETCSIT-V3I1P112

[31] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of
Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.]JERET-V3I4P107

[32] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science,
and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[33] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle Al Services. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.]JAIDSML-V3I1P109

[34] Rahul, N. (2022). Automating Claims, Policy, and Billing with Al in Guidewire: Streamlining Insurance Operations. International Journal
of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.]JERET-V3I4P109

[35] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching
Techniques. International ~ Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-
76. https://doi.org/10.63282/3050-9262.]JAIDSML-V3I4P108

[36] Karri, N., & Pedda Muntala, P. S. R. (2022). Al in Capacity Planning. International Journal of AL, BigData, Computational and Management
Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V3I1P111

71

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112
https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
https://doi.org/10.63282/xs971f03
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

‘Sandcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

[37] Tekale, K. M., & Rahul, N. (2022). Al and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss
Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113.
https://doi.org/10.63282/3050-9262.]JAIDSML-V3I1P111

[38] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International
Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X. JJERET-V4I1P111

[39] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.]JAIDSML-V4I4P109

[40] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer
Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.JETCSIT-V4I1P108

[41] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User
Productivity. International ~ Journal of Artificial Intelligence, — Data Science, and Machine Learning, 4(4), 97-
104. https://doi.org/10.63282/3050-9262.JJAIDSML-V4I4P111

[42] Rahul, N. (2023). Transforming Underwriting with Al: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International
Journal of Al, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V4I3P110

[43] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of
Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.]JERET-V4I4P109

[44] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). Al Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or
Biased Algorithmic Decisions. International Journal of Al BigData, Computational and Management Studies, 4(1), 137-
146. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V4I1P114

[45] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Al-Driven Indexing Strategies. International Journal of Al, BigData,
Computational and Management Studies, 4(2), 111-119. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V4I2P112

[46] Rusum, G. P., & Pappula, K. K. (2024). Platform Engineering: Empowering Developers with Internal Developer Platforms (IDPs).
International Journal of AI, BigData, Computational and Management Studies, 5(1), 89-101. https://doi.org/10.63282/3050-
9416.JJAIBDCMS-V5I1P110

[47] Gowtham Reddy Enjam, Sandeep Channapura Chandragowda, "Decentralized Insured Identity Verification in Cloud Platform using
Blockchain-Backed Digital IDs and Biometric Fusion" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2,
Pp. 75-86, 2024.Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.]JAIDSML-V5I11P108

[48] Rahul, N. (2024). Improving Policy Integrity with Al: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.]JAIDSML-V5I1P111

[49] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation.
International Journal of Al, BigData, Computational and Management Studies, 5(2), 102-116. https://doi.org/10.63282/3050-
9416.JJAIBDCMS-V5I2P111

[50] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. International Journal of Al, BigData,
Computational and Management Studies, 5(1), 102-113. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V5I1P111

[51] Karri, N. (2024). Real-Time Performance Monitoring with AL International Journal of Emerging Trends in Computer Science and
Information Technology, 5(1), 102-111. https://doi.org/10.63282/3050-9246.]JETCSIT-V5I1P111

[52] Tekale, K. M. (2024). Al Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative Al, Bias Detection, and
Explainability in Insurance Decisioning. International Journal of Al, BigData, Computational and Management Studies, 5(1), 159-166.
https://doi.org/10.63282/3050-9416.[JAIBDCMS-V5I11P116

[53] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International
Journal of AL, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V1I4P103

[54] Rahul, N. (2020). Vehicle and Property Loss Assessment with Al: Automating Damage Estimations in Claims. International Journal of
Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.]JERET-V1I4P105

[55] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of
Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.]JJERETV1I3P106

[56] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal
of Al BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V214P108

[57] Pedda Muntala, P. S. R. (2021). Integrating Al with Oracle Fusion ERP for Autonomous Financial Close. International journal of Al
BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V2I2P109

[58] Rahul, N. (2021). Al-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging
Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.]JERET-V2I1P107

[59] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging
Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.]JERET-V2I3P108

[60] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1),
63-71. https://doi.org/10.63282/3050-9262.]JAIDSML-V2I1P108

[61] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of
Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.]JERET-V3I3P111

[62] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering
and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.]JERET-V3I1P110

72

https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111
https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
https://doi.org/10.63282/3050-922X.IJERETV1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108
https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
https://doi.org/10.63282/3050-922X.IJERET-V3I1P110

‘Sandcep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala [2025] How IaC Tools Can Be Used to Automate Infrastructure Provisioning and
Management within the CI/CD Pipeline

[63] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business
Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95.
https://doi.org/10.63282/3050-9262.JAIDSML-V3I4P110

[64] Rahul, N. (2022). Optimizing Rating Engines through Al and Machine Learning: Revolutionizing Pricing Precision. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.]JAIDSML-V3I3P110

[65] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in
Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.]JETCSIT-V3I2P109

[66] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur.
International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.JJERET-
V3I2P111

[67] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of
Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.JETCSIT-
V3liP113

[68] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in
Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.]JETCSIT-V4I4P111

[69] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData,
Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V4I3P108

[70] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). Al-Driven Software Design Patterns: Automation in System Architecture. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.]JAIDSML-
V4I1P109

[71] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use
Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-
922X.JJERET-V4I3P110

[72] Rahul, N. (2023). Personalizing Policies with Al: Improving Customer Experience and Risk Assessment. International Journal of Emerging
Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.JETCSIT-V4I1P110

[73] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using
Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-
106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[74] Tekale , K. M. (2023). Al-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.]JAIDSML-V4I2P113

[75] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in
Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.JETCSIT-V4I4P112

[76] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-
Augmented Generation (RAG). International Journal of Al, BigData, Computational and Management Studies, 5(4), 124-136.
https://doi.org/10.63282/3050-9416.]JAIBDCMS-V514P113

[77] Enjam, G. R. (2024). Al-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial
Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.]JAIDSML-V5I4P112

[78] Pappula, K. K., & Rusum, G. P. (2024). Al-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of
Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[79] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with Al: Enhancing Claims Processing Accuracy and Efficiency. International
Journal of Al, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V5I2P113

[80] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. Inter national
Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.]JAIDSML-
Vs5I4P111

[81] Anasuri, S., & Rusum, G. P. (2024). Software Supply Chain Security: Policy, Tooling, and Real-World Incidents. International Journal of
Emerging Trends in Computer Science and Information Technology, 5(3), 79-89. https://doi.org/10.63282/3050-9246.]JETCSIT-
V5I3P108

[82] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s Al Vector Search to Enable Concept-Based Querying across Structured and
Unstructured Data. International ~ Journal —of AI, BigData, Computational and Management Studies, 5(3), 145-
154. https://doi.org/10.63282/3050-9416.]JAIBDCMS-V5I3P115

[83] Tekale, K. M. (2024). Generative Al in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in
Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.]JETCSIT-V512P113

73

https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113
https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

