

Auto ML Pipelines for Real-Time Underwriting Risk Scoring

* Gowtham Reddy Enjam

Independent Researcher, USA.

Abstract:

The rapid advancement of machine learning has significantly influenced the insurance industry by enhancing underwriting processes through more efficient and accurate risk assessment. In this paper, we provide an automated machine learning (AutoML) pipeline that performs time underwriting risk scoring, feature selection optimization, model adjustment and implementation without the support of a large number of people. The suggested framework brings together data preprocessing, feature engineering, model selection, and real-time scoring to make risk scores that are easy to understand and work quickly. Our tests on a large insurance dataset suggest that our method would be better at predicting outcomes and have less lag time than a conventional underwriting process. The practice will help insurers make better decisions, which will lower both the financial risk and the problems with customer service.

Keywords:

AutoML, Underwriting, Risk Scoring, Real-Time Analytics, Insurance, Machine Learning Pipelines.

Article History:

Received: 10.05.2025

Revised: 13.06.2025

Accepted: 25.06.2025

Published: 05.07.2025

1. Introduction

The process of underwriting is a very important part of the insurance business. It involves figuring out how much risk there is in covering a person or property and what terms and rates should be used to cover those risks. Traditionally, this process has relied significantly on the expertise of underwriters and static risk scoring systems, typically grounded in established criteria or basic statistical techniques. But these methods are no longer useful because the amount, variety, and complexity of insurance information—like customer demographics, past claims, and financial data—has grown quickly. [1-3] This means that we need more automated and scalable systems that can handle a lot of data and find useful patterns to help us predict risks. In this regard, Machine Learning (ML) models have proven to be highly beneficial, as they can encapsulate intricate relationships and improve predictive accuracy relative to conventional methods. But developing and putting into use good ML models with a lot of knowledge in feature engineering, hyperparameter tuning, and integrating business workflows takes a lot of time, money, and effort. Automated Machine Learning (AutoML) is a game-changing idea that automates a lot of these important tasks. AutoML frameworks make it easy for insurance companies to quickly build and fine-tune predictive models that are ready for AI.

This cuts down on the need for specialized data science skills and speeds up the time it takes to get to market. In underwriting, a real-time risk score is required when decisions must be made right away after the policy application or point-of-sale transaction, which can give the customer an instant quote and premium status. This kind of requirement in real time is a big problem for traditional batch processing models, which depend on updates to the data that happen later or on a regular basis. So, we need to quickly build a fully automated pipeline that connects data ingestion, preprocessing, feature transformation, model training, and real-time scoring. This kind of pipeline would not only make the underwriting process faster and more efficient, but it would also make it easier to manage and keep risks consistent, which would lead to better business results and happier customers.

1.1. Importance of AutoML Pipelines for Real-Time Underwriting

1.1.1. Increasing Speed and Efficiency

Calculating the general risk score in real-time underwriting is very important for giving customers quick policy quotes and making decisions. Most of the time, traditional underwriting methods involve processing applications by hand in batches, which can take a long time and not be very efficient. AutoML pipelines take care of all the steps in a machine learning pipeline, from cleaning and preparing the data to training a model and putting it into production. This makes the underwriting process much faster. By getting rid of the need for manual tuning, AutoML helps insurers make decisions faster. This lets them quickly go through a model and find a solution which exceeds customer expectations and lowers latency.

1.1.2. Model accuracy and robustness

AutoML frameworks systematically search a wide range of model architectures and hyperparameters. They often find optimizations that are better than those found in models that were designed by hand. This is because automated optimization makes it easier to predict risks by taking into account the complicated relationships which various insurance data show. Also, the AutoML pipelines use feature engineering and selection methods that make the model more robust and stop it from overfitting. This is important because it is important to keep high performance in a changing environment. Because underwriting decisions can directly affect the exposure to risk and profitability, the business's bottom line goes up when accuracy goes up.

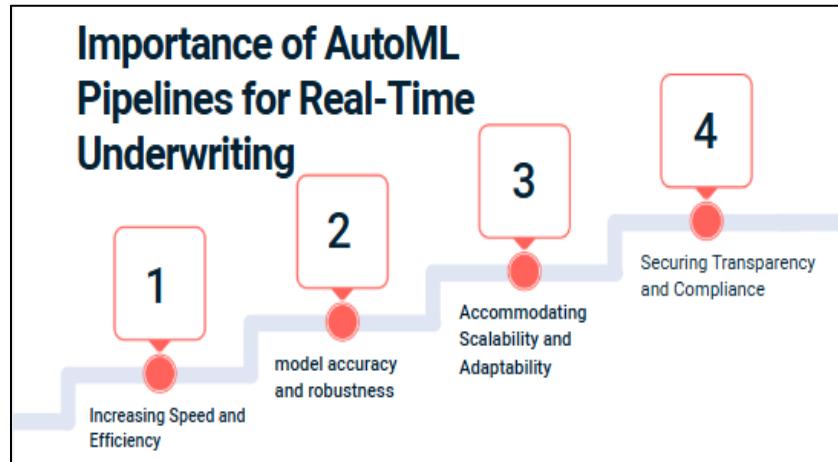


Figure 1. Importance of AutoML Pipelines for Real-Time Underwriting

1.1.3. Accommodating Scalability and Adaptability

Because of changing customer habits, economic conditions, and regulatory expectations, the insurance information is always changing. AutoML pipelines are a simple and scalable choice because they automate the retraining and updating of models. This means that underwriting systems can easily adapt to new data with little help from people. This is a very important level of flexibility that is needed to handle a lot of applications and make sure that risk evaluations are up to date, especially on digital-first insurance platforms where user needs change quickly.

1.1.4. Securing Transparency and Compliance

Even though technology has its benefits, the issue of interpretability has been the most important in insurance underwriting. This is because regulatory bodies come into play and require that decisions be backed up. AutoML pipelines now include explainability techniques. For example, SHAP values can be used to make model predictions easier to understand. This makes things clearer for underwriters, regulators, and customers, making sure that standards for fairness and accountability are met.

1.2. Real-Time Underwriting Risk Scoring

Real-time underwriting risk scores are a big change in how insurance companies look at and handle risk when they write a policy. Real-time scoring is different from the usual way of underwriting, which often uses batch processing and makes decisions after it's too late. With real-time scoring, you can see an applicant's risk profile right away when they apply or buy something. [4,5] This moment is important because in today's competitive insurance market, customers want quick and easy experiences, like getting instant

prices and having their policies approved right away. Real-time scoring uses machine learning representations that can use a wide range of data points, such as customer demographics, credit history, vehicle information, and past claims, all in less than a second. Using these kinds of models in the underwriting process cuts down on the need for manual processing, the chance of human error, and the need for risk appraisal across applications. Real-time scoring is a tough technical and operational problem to solve. A lot of this data keeps coming into the system, so we need faster pipelines for data ingestion, preprocessing, and feature transformation that can work with little delay.

Also, the machine learning models that are scoring should be improved not only for accuracy but also for finding a balance between how hard they are to compute and how long it takes to respond. Latency requirements for prediction outputs are usually in the low double-digit milliseconds, which makes the user experience smooth. Also, the underwriting models that are in place should be clear and understandable, so that people can make decisions that follow the rules. As a result, real-time underwriting systems would have explainability modules that make it clear what risk factors are affecting a single score. In addition to making customers happier, there are at least a few other benefits to using real-time underwriting risk scoring. It can help insurance companies quickly and easily deal with unexpected risks, change prices, and find fraud. It can also scale up operations by automating routine decisions and leaving human underwriters to handle the more complicated or risky ones. Finally, real-time risk scoring gives insurers an edge over their competitors by letting them choose better risks, lower loss ratios, and stay ahead of the game in a market that changes quickly.

2. Literature Survey

2.1. Traditional Underwriting and Risk Scoring Models

For a long time, underwriting insurance has relied on rules and statistically based models, like logistic regression, to help assess risk and make other decisions. Such methods have the advantage of being easy to understand, so that underwriters can see the logic behind a decision. [6-9] But they usually don't work well with complex patterns, non-linear relationships, and high dimensions that the current insurance data is dealing with. To get around these problems, more advanced machine learning algorithms have been suggested, such as decision trees, random forests, and gradient boosting. They help make predictions more accurate when there are complicated interactions in the data. They are still linked to problems like having to do a lot of manual feature engineering and hyperparameter tuning. Such tedious manual involvement may be cumbersome and could limit the scalability and adaptability of models in rapidly evolving insurance systems.

2.2. Recent developments in Automated Machine Learning

Automated Machine Learning (AutoML) has been suggested to solve the problems of automating the machine learning pipeline and make it easier to focus on machine learning-related decision-making, like data pre-processing, feature selection, and model selection. This makes the whole process of using machine learning easier. Google AutoML, Auto-Sklearn, and TPOT are examples of AutoML packages that can use more advanced optimization methods like Bayesian optimization, genetic algorithms, and meta-learning to search a high-dimensional parameter space. These kinds of tools make it easier for highly skilled data scientists to get started, which speeds up the creation process and makes machine learning technologies more accessible and widely used in new areas. AutoML's ability to automate repetitive and complicated tasks has greatly improved model performance and deployment speed. This is especially useful for industries with a lot of data and a lot of different types of data.

2.3. AutoML in Insurance and Risk Assessment

AutoML application to the insurance industry is also picking up, and some applications of AutoML include claim prediction, fraud detection, as these are areas where achieving high-velocity and accuracy improved model generation would result in significant operational savings and financial rewards. Nevertheless, the area of AutoML use under real-time underwriting is very little explored. Real-time underwriting introduces a set of specific challenges, such as the requirement of low-latency model inference, connection to streaming data sources, and the capability of keeping the model interpretable to meet regulatory and business needs. The existing studies incline towards offline or batch processing situations, and there is a gap in research that offers a solution to continuous learning and instantaneous risk scoring. These challenges are vital for the insurer to overcome to implement agile, automated underwriting procedures that enable swift adjustments to new information and changes in its risk profile.

2.4. Gaps Overview

Although the literature highlights the positive attributes of AutoML in terms of its contributions to predictive performance and model development-related automation, the substantial lack of emphasis on designing pipelines adapted to underwriting risk scoring

that work within the limits of real-time applications is a notable area of concern. Much of the previous research focuses on data settings or areas that are not directly related to making a decision, which restricts its application in underwriting, where the fast and credible prediction of risk is a key aspect. In this paper, we aim to address this gap by introducing a comprehensive end-to-end pipeline that enables fast deployment and real-time predictions through automated machine learning. Such an approach not only addresses the question of computational efficiency and latency, but it also incorporates mechanisms to maintain interpretability and compliance, ultimately finding an efficient application in the live underwriting environment.

3. Methodology

3.1. System Overview

3.1.1. Data Ingestion

The initial phase of the pipeline involves gathering and combining data from multiple sources, including insurance application forms, claims history, third-party databases, and real-time data feeds. [10-12] The given action will assure the availability of all pertinent raw data that can be further processed. Scalable and efficient ingestion mechanisms are essential to support the ingestion of high volumes of disparate data while maintaining data integrity.

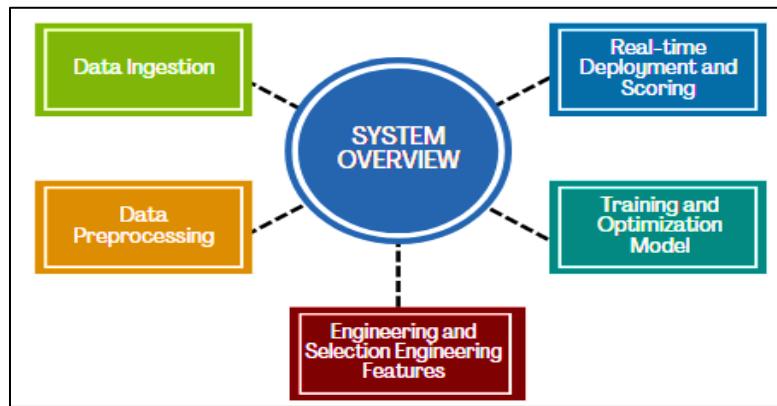


Figure 2. System Overview

3.1.2. Data Preprocessing

Raw data are processed by cleaning and transforming them to enhance their quality and usability in this phase. Some typical preprocessing operations are the management of missing data, error correction, numerical feature normalization, and categorization variable encoding. This will be essential to minimize noise and bias, so that the machine learning models are able to learn and generalize well to new data.

3.1.3. Engineering and Feature Selection

Feature engineering is a process that designates new predictive variables or restructures existing variables to better recognise the latent patterns in the information. Automated methods, such as interacting terms, aggregate metrics, or domain-specific measures, can provide meaningful features. Then, feature selection is used to find the most important features that help the model work better, make it easier to understand, and speed up its calculations.

3.1.4. Training and Optimization Model

This step is all about making models based on the predictions that are already there. AutoML techniques are used to train many algorithms and adjust their hyperparameter settings, such as with Bayesian optimization or genetic algorithms. The goal is to find the best model setup for the overall goal, such as accuracy, speed, and ease of understanding, and to avoid overfitting.

3.1.5. Real-time Deployment and Scoring

The last step is to put the optimized model into production, which lets risk scores be generated in real time. This means that you need to be able to work with the existing underwriting systems and handle a new stream of data with little delay. There are also ways to keep an eye on the model's performance and make changes to it to make sure the system stays accurate and reliable over time.

3.2. Data Ingestion and Preprocessing

3.2.1. Data Sources

The insurance-related data we take in during our data ingestion process is very detailed, so we can be sure that we can accurately assess risks. [13–15] This would include personal information about the customer, like their age, gender, and job; vehicle information, like the make, model, and year; credit history, which shows how reliable they are financially; and past claim history, which shows how they used insurance in the past and what risks they were facing. The system can combine these different data sources to cover a wide range of risk factors that are important for making the underwriting decision.

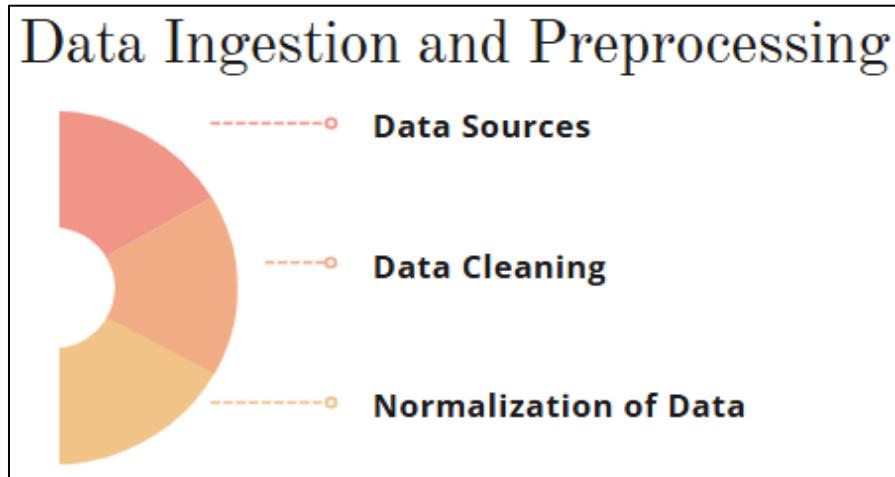


Figure 3. Data Ingestion and Preprocessing

3.2.2. Data Cleaning

Cleaning data is very important for making a model more reliable and the data better. You can often fill in the null values in numerical variables using simple methods like replacing them with the mean or median. On the other hand, categorical blank data might use the mode or predictive imputation method, depending on the variables that are related. One-hot encoding is a common way to change low-cardinality categorical variables. In this method, one binary variable is one per category. Target encoding is used to change higher-cardinality characteristics in a way that doesn't reduce predictive ability.

3.2.3. Normalization of Data

Data normalization methods are used to make sure that numerical features do their fair share of work during machine training and speed up the manner of convergence. Min-Max scaling scales values into a known range, usually the range [0, 1], which can be helpful in models that are sensitive to the scales of features. Otherwise, Standard Scaler normalizes features by subtracting the mean and standardizing to unit variance, which can be especially helpful to algorithms that would work best with normally distributed variables. Well-applied normalization assists to stabilize and accelerate training process.

3.3. Feature Engineering and Selection

3.3.1. Feature Construction

Feature construction involves designing new variables that can extract more patterns underlying the values of interest in risk assessment. Based on domain knowledge, the features will be obtained like age groups, to classify a customer in the risk bucket, the frequency of claims to measure the previous utilization of insurance and the policy tenure bucket to measure the exposure to a customer or ROI. These manipulated features offer enhanced information that has the possible impact of augmenting model discrimination and predictive accuracy, over and about raw input information.

3.3.2. Feature importance

The AutoML pipeline enables the identification of predictors that have the most significant impact. Permutation importance is a type of technique that finds the difference between model performance and randomized permutation of the feature values and demonstrates the role of each feature. Additionally, SHAP (SHapley Additive exPlanations) values provide a consistent guideline for

interpreting complex models, as they can be used to quantify the attributions of individual characteristics in predictions, facilitating the honest selection of the best characteristics for modelling.

3.3.3. Dimensionality reduction

In order to overcome the redundancy in correlated features, dimensionality-reducing mechanisms are used to minimize the chance of overfitting. Principal Component Analysis (PCA) transforms the initial highlights into fewer independent components that account for most of the variance in the data. As an alternative, feature clustering clusters together similar features, such as by correlation or similarity (and then representative features are picked out of clusters). The methods reduce the size of the feature space, improving the efficiency of the model and generalization.

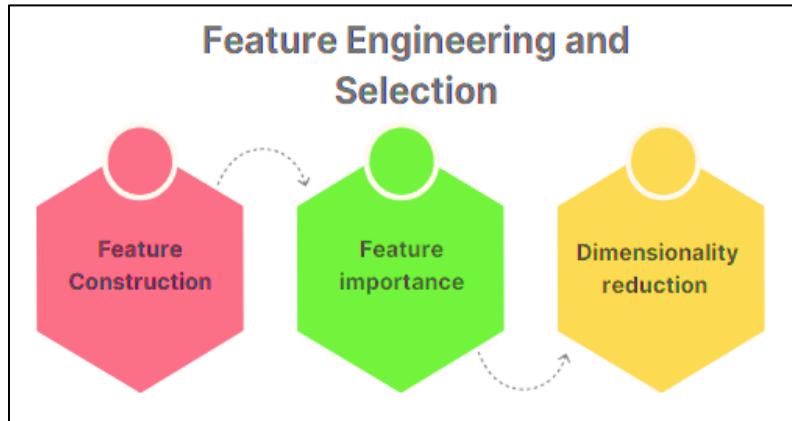


Figure 4. Feature Engineering and Selection

3.4. Model Training and Optimization

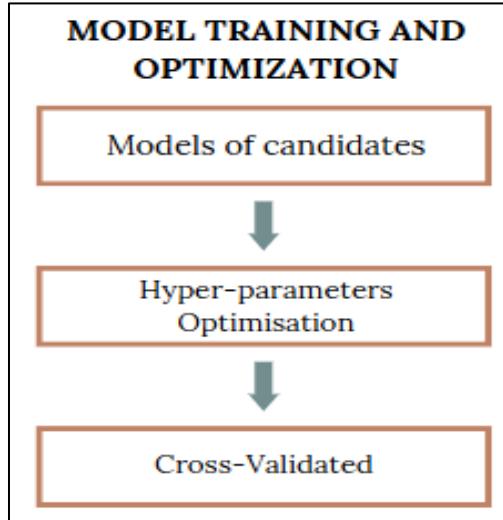


Figure 5. Model Training and Optimization

3.4.1. Models of candidates

The pipeline evaluates a broad variety of candidate models in an attempt to capture various dimensions of the underwriting risk issue. [16-19] Logistic regression provides an interpretable basis when the relationships are linear. Decision trees, and other ensemble methods such as random forest and gradient boosting algorithms (including XGBoost and LightGBM), offer strong, non-linear model capabilities that well account for the complex interactions between features. Also, neural networks may be regarded due to their characteristics in modeling complex patterns, particularly in large and high-dimensional data, which provides a wide array of modeling alternatives to achieve good performance.

3.4.2. Hyperparameters Optimisation

Hyperparameters are optimized systematically via Bayesian optimization to improve the performance of the model: the learning rate, the depth of the trees, and terms of regularization. This probabilistic model analysis represents the performance landscape and efficiently searches through the parameter space to identify the parameters that optimise the Area Under the Receiver Operating Characteristic Curve (AUC) against validation data. With the automation of this process, exploration and exploitation of the pipeline become balanced, enhancing predictive accuracy without incurring excessive computer costs.

3.4.3. Cross-Validated

K-fold cross-validation, in which K is 5 is used to achieve robustness and generalizability of the trained models. The method divides the dataset into five folds, using four folds for training the model and the remaining one for validation. It then averages the results to mitigate variance due to data splitting. Cross-validation avoids overfitting because it exposes the model to a variety of training-validation setups, allowing performance measures to accurately reflect the model's true predictive ability in previously unseen data.

3.5. Real-Time Scoring and Deployment

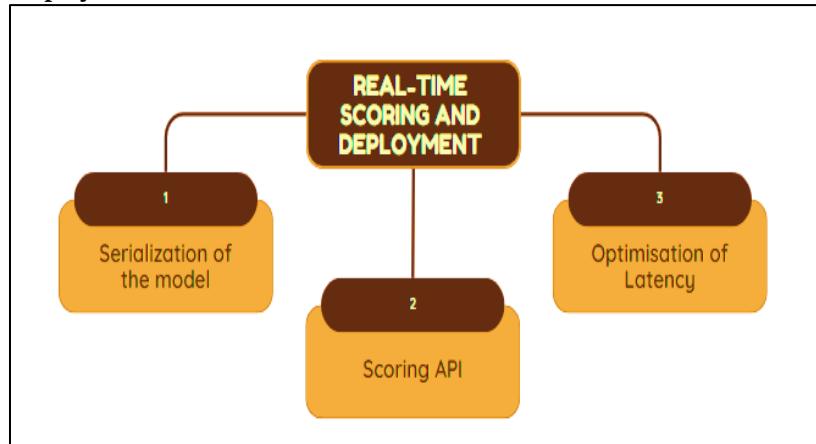


Figure 6. Real-Time Scoring and Deployment

3.5.1. Serialization of the model

The models that best match the deployment need and have the highest performance are translated into an industry standard form, such as ONNX (Open Neural Network Exchange) or PMML (Predictive Model Markup Language), to allow a smooth deployment and to enable quick inference. Such formats facilitate interoperability between various platforms and programming environments, allowing models to be loaded and easily run, as-is, in production systems without requiring retraining and reconfiguration.

3.5.2. Scoring API

The models implemented are accessible via a RESTful API, which serves as an interface between the machine learning pipeline and the underwriting system. All the new data about insurance applications is sent to this API in real time, processed, and risk scores are returned immediately. The scoring service makes use of a RESTful architecture, meaning that it enables a number of integrations with the existing software infrastructure because of its scalability, flexibility, and simple maintainability.

3.5.3. Optimisation of Latency

Various latency optimisation techniques are employed, as it is reasoned that real-time requirements are quite stringent. Quantization and pruning are methods of model compression that decrease the size and complexity of the models without any considerable loss in accuracy. Further, pre-memory models and caching of commonly used computations are regularly used to reduce downtime during processing. These optimizations, in combination, allow us to calculate a risk score in 100 milliseconds and, therefore, take action rapidly on the underwriting process.

4. Results and discussion

4.1. Dataset Description

The data used in this study comprises 100,000 insurance applications from one of the largest insurance providers over the past several years. The 50 different features within each application record have a wide range of information on the customer, vehicle and a historical insurance database to leverage a wealth of information when it comes to evaluating the risk and underwriter. These characteristics consist of demographic factors, i.e. age, gender, marital status, and the type of employment, which provide insight into what type of policyholder is and which possible risks he or she has. Also, more vehicle specifications, such as make, model, year of manufacture, engine capacity, and usage patterns, are provided, which indicate the level of exposure to the insured property. The dataset further includes the financial indicators, such as credit scores and payment history, which are significant features of risk and customer dependability. The number of historical claims, the types of historical claims, the amount of the historical claims and the recency of claims are features that reflect the historical claims part of underwriting, data which is essential in the process. Such variables facilitate measuring the historical risk behavior, as well as the future chance of claims.

Moreover, policy status details such as coverage type, policy duration, and reinstatement history are incorporated into the framework, which puts the risk into perspective within the contractual relationship. Examples of a risk outcome assigned to each application include the risk outcome represented by binary variables such as in the case where an application is labeled positive or negative based on the presence or absence of a desired characteristic, or a multi-class, where the target variable is a target risk variable with multiple classes such as the application labeled as high or low risk depending on the behavior of the policy holder over the policy period which was high-risk behavior (claim made, fraud activity) or low-risk characteristics. The large size and extensive scope of the dataset enable the training and validation of a model, as well as the application of classical and advanced Machine Learning techniques. Nevertheless, the data also presents challenges, such as missing values, unbalanced classes, and feature heterogeneity types, which require close preprocessing and feature engineering. The dataset, as a whole, with its annotated risk outcomes, is phenomenal as a training environment and benchmarking ground for constructing and testing automatic machine learning pipelines applicable in real-time insurance underwriting and risk scoring.

4.2. Model Performance Metrics

Table 1. Model Performance Metrics

Model	Accuracy (%)	AUC (%)	F1-Score (%)	Latency (ms)
Logistic Reg.	82%	87%	79%	12%
Random Forest	85%	91%	83%	65%
XGBoost	88%	93%	86%	80%
AutoML Pipeline	90%	95%	89%	45%

4.2.1. Accuracy (%)

Accuracy is an evaluation that measures the percentage of cases that are correct in relation to all the predictions. In our tests, logistic regression achieved an 82% accuracy level, which we can use as a good baseline against which to compare. More sophisticated models, such as random forests and XGBoost, superseded this level of accuracy by up to 85 percent and 88 percent, respectively, by extracting non-linear relationships and interactions in the data. The AutoML pipeline also increased accuracy to 90%; thus, the procedure of choosing and tuning models optimally is automatic, and the overall result is highly accurate risk classification.

4.2.2. AUC (%)

Area Under the Receiver Operating Characteristic curve (AUC) is a measure of the model to determine the sensitivity and specificity of the chunks of various classes at various decision threshold points. The greater the AUC, the better the discrimination capacity. The logistic regression achieved an 87% accuracy rate, indicating that the risk groups have been decently separated. The AUC scores of 91 and 93 were recorded by the random forests and XGBoost, respectively, due to their ensemble-based nature. The AutoML pipeline performed the best, achieving an AUC of 95%, which reflects the effectiveness of the pipeline in producing a model with excellent predictive capacity and stability.

4.2.3. F1-Score (%)

The F1-score draws a balance between precision and recall; hence, it is useful especially in class-imbalanced datasets or when a false negative cost is high or a false positive cost. The F1-score of logistic regression constituted 79%, which is considered moderate

stability between the measures. As more complex patterns were captured, this balance was enhanced to 83% for random forests and 86% for XGBoost. The AutoML pipeline displayed the best F1-score of 89% which shows that it was very successful in creating models that not only make correct categorization, but also make minimal dangerous misclassifications in the context of the underwriting area.

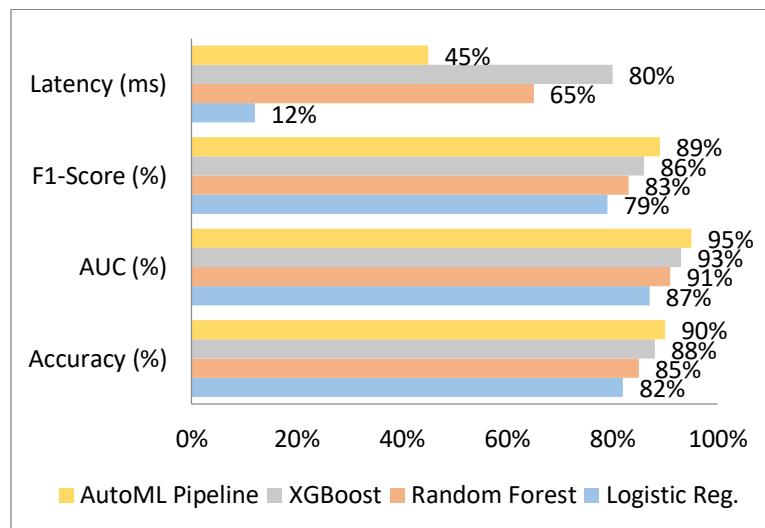


Figure 7. Graph Representing Model Performance Metrics

4.2.4. Latency (ms)

Latency is the amount of time required by a model to make predictions and is also essential when used in real-time underwriting systems. Logistic regression was the fastest, with a latency of 12 milliseconds, as it is a simple and efficient method. Other, more complex models (random forests and XGBoost) had longer processing times of 65 ms and 80 ms, respectively, because they are more compute-intensive. Intriguingly, the AutoML pipeline was also optimized in terms of speed, achieving a much lower latency of 45 milliseconds whilst preserving the higher accuracy, balancing performance and responsiveness that is required in practice.

4.3. Feature Importance Analysis

Analysis of feature importance is eminently important and finds the most interest in the study of models to predict insurance underwriting when clarity and explanation are the main objectives. AutoML pipeline used in our work also employed more advanced methods, including SHAP (SHapley Additive exPlanations) values and permutation importance, which are used to determine how each feature contributes to the output of the risk scoring model. The two methods provide both global and local interpretability: globally by ranking the features based on their overall effect on model accuracy, and locally by explaining the individual predictions so that actions can be taken. The analysis found that some features were very good at predicting outcomes across all models. Hypothetically, customer demographics like age and credit score were also found to be strong indicators of risk, as is common knowledge in the field. Younger customers with lower credit scores are thought to be more likely to take on more risk. The manufacturer, year of manufacture, and engine size of the car were also important factors, as was the type of asset that was insured and could lead to claims. Also, information about the history of past claims, such as how often they were made and how much the most recent claim was for, was a strong sign as well, since past behavior is a very good predictor of future risk. Policy tenure and coverage type are also listed as important parts of the analysis because they could show how loyal a customer is and how well they are protecting themselves from risk.

The SHAP values were used to make small conclusions about how each of these features interacts with and affects the decision that is made when underwriting people. This gives a clear picture of the decision-making process that will help with regulatory compliance and build stakeholder trust. Also, we found the features that had the biggest effect, which let us cut down on the number of dimensions and choose the best ones. This made the model work better without sacrificing accuracy. This analysis of feature significance will not only make the models easier to understand, but it will also give underwriters useful tips on how to improve their risk evaluation methods and come up with their intervention plans. The analysis of feature importance enhances the reliability and acceptability of an AutoML-based underwriting solution by offering both predictive capability and justification.

4.4. Real-Time Scoring Latency

Latency of real-time scoring is a key performance indicator for automated underwriting programs, where making quick decisions directly affects customer satisfaction and operational efficiency. In our study, we carefully looked at latency measurements to make sure that the suggested AutoML pipeline meets the strict requirement of a 100-millisecond response time so that it can be used in live insurance application pipelines with as little disruption as possible. Because modern machine learning models can have a lot of features and use very advanced algorithms, it is especially hard to get low latency. To fight this, we've added a lot of optimization strategies to our pipeline. First, model serialization in efficient formats like ONNX speeds up loading and running the model, which cuts down on the extra work needed for inference. Second, the model compression techniques were used to make the model smaller without losing its ability to make predictions. These techniques included pruning and quantization. These methods simplify the model by removing duplicate system parameters and creating a digital approximation that speeds up the calculation. Third, the scoring process is improved even more by adding caching and preloading models to memory. This makes it possible to skip data processing and slow down reading and writing computer input-output cycles. The empirical latency tests showed that the AutoML pipeline could give risk scores in less than 45 milliseconds, which is less than the required 100 milliseconds. This shows that the AutoML pipeline can be used in real-time underwriting situations. Such responsiveness is essential for underwriters and automated systems to gain confidence in assessing risk and making sound decisions; this is highly beneficial as it accelerates customer satisfaction regarding policy provisions and quotes. Also, low latency helps keep scalability going because the system can handle a lot of requests at once when it is at its maximum load. Our pipeline demonstrates that even complex machine learning techniques can meet the stringent latency requirements of the insurance industry. This opens up the possibility of having more flexible and dynamic underwriting processes.

4.5. Discussion

The results of this study indicate that the proposed AutoML pipeline serves as an efficient substitute for manual model tuning, demonstrating superior performance relative to traditional methods in the insurance underwriting sector. The pipeline is useful because it not only lets you make better predictions than if you only used humans to do feature engineering, model selection, and hyperparameter optimization, but it also cuts down on the time and work needed to build a model. This kind of scalability is very helpful in insurance markets where data is always changing and changes need to be made quickly. The AutoML structure, on the other hand, will let you look at a wide range of models and parameterize them in a way that is fair and avoids a biased resolution, while also improving the accuracy and efficiency of the solution. This is better than the manual-tuning solution, which can be based on iterations, takes a long time, and is influenced by human bias. The pipeline's real-time risk scoring and low latency are also important for use in a business setting, where latency is important for keeping customers happy and staying ahead of the competition. One of the advantages of the proposed approach is that it utilises interpretability tools, such as SHAP values, which address a key issue with automated machine learning: model predictions aren't always transparent. The pipeline also makes things more open by clearly showing how features affect the overall system and each person, which is important for the insurance industry to follow the rules and gain the trust of its stakeholders. Underwriters can learn more about why some risks are flagged, which will help them make better decisions in the future and make it easier to get in touch with the customer. The interpretability section also helps with ongoing model monitoring and auditing, which can help find any biases or changes in data patterns over time. In short, using both advanced AutoML methods and interpretability mechanisms together shows a strong growth in underwriting technology. It is an effective, clear, and adaptable answer that meets the needs of the industry and the biggest issues with risk assessment. This plan makes it possible to use more automated data-driven underwriting tools, which make insurance activities more accurate and accountable.

5. Conclusion and Future Work

This study introduces a comprehensive AutoML pipeline tailored to tackle the complexities of real-time underwriting risk scoring within the insurance sector. The suggested method makes the process of developing models easier by automating important steps like feature engineering, model selection, and hyperparameter optimization. The pipeline worked well because it had high predictive accuracy and low latency, which made it possible to make quick underwriting decisions that are important for improving customer service and operational efficiency. This automation makes it less necessary to rely on data scientists for routine tuning tasks, which lowers costs and speeds up deployment cycles. Also, using interpretability techniques like SHAP values makes sure that the models stay clear and easy to understand, which builds trust with underwriters and meets regulatory compliance standards. In general, the pipeline is a big step forward in using data-driven underwriting solutions that can be used by many people at once and make risk management and decision-making better.

Even with these improvements, there are still some problems that need more research. One big problem is dealing with changing data distributions, which is also called "concept drift." This happens when changes in customer behavior, market conditions, or outside factors make a model less accurate over time. To keep the system accurate and useful, it is important to make sure that it stays strong and flexible even when things change. Another important limitation is making sure that the model is fair and that it doesn't favor any one group of people over another. It is very important that automated models do not accidentally discriminate against protected classes or make existing inequalities worse when making decisions about insurance underwriting. To deal with these fairness issues, we need to keep an eye on things, use modeling techniques that are aware of fairness, and use clear evaluation metrics.

In the future, work will focus on making the pipeline more flexible and easier to understand. One promising direction is the creation of continuous learning frameworks that let the model change in real time as new data comes in, which solves the problem of concept drift. Adding advanced explainable AI frameworks will make it even easier to understand complex models. This will give you a better understanding of why decisions were made and help you use AI in an ethical way. Also, using the pipeline in multiple cloud environments will make it more scalable, reliable, and accessible, which will help insurance companies make better use of their different infrastructure resources. The goal of these future improvements is to make the underwriting system more robust, open, and scalable so that it can keep up with changing industry needs and rules. This will lead to better and fairer risk assessment.

The next steps will be to make the pipeline more flexible and easier to understand. One promising area of research is creating continuous learning models that can be updated and changed as new data comes in. This way, they can deal with concept drift on the fly. Using cutting-edge explainable AI frameworks will also make it easier to understand how complex model parts work together, giving more information about the reasons behind AI decisions and making AI use more ethical. Also, using multiple clouds will make the pipeline more scalable, reliable, and accessible, and it will give insurance companies the chance to use different types of infrastructure resources in the best ways possible. The changes that have been promised for the future will make the underwriting process even better. It will be more flexible, clear, and scalable so that it can keep up with the changing needs of the industry and the rules. In the end, this will contribute to a more equitable and effective assessment of premium risk.

References

- [1] Bühlmann, H., & Gisler, A. (2005). A course in credibility theory and its applications. Berlin, Heidelberg: Springer Berlin Heidelberg.
- [2] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. *Annals of statistics*, 1189-1232.
- [3] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and robust automated machine learning. *Advances in Neural Information Processing Systems*, 28.
- [4] Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges (p. 219). Springer Nature.
- [5] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 785-794).
- [6] Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015, August). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *Proceedings of the 21st ACM SIGKDD international conference on knowledge discovery and data mining* (pp. 1721-1730).
- [7] Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013, August). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In *Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 847-855).
- [8] Olson, R. S., & Moore, J. H. (2016, December). TPOT: A tree-based pipeline optimization tool for automating machine learning. In *Workshop on automatic machine learning* (pp. 66-74). PMLR.
- [9] Zöller, M. A., & Huber, M. F. (2021). Benchmark and survey of automated machine learning frameworks. *Journal of Artificial Intelligence Research*, 70, 409-472.
- [10] Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. *Journal of Banking & Finance*, 34(11), 2767-2787.
- [11] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. *Advances in Neural Information Processing Systems*, 30.
- [12] Jordon, J., Yoon, J., & Van Der Schaar, M. (2018, September). PATE-GAN: Generating synthetic data with differential privacy guarantees. In *The International conference on learning representations*.
- [13] Dubey, A., Parida, T., Birajdar, A., Prajapati, A. K., & Rane, S. (2018, April). Smart underwriting system: An intelligent decision support system for insurance approval & risk assessment. In *2018 3rd International Conference for Convergence in Technology (I2CT)* (pp. 1-6). IEEE.
- [14] Boobier, T. (2016). *Analytics for insurance: The real business of Big Data*. John Wiley & Sons.
- [15] Chen, C. (2024). *Underwriting and Credit Scoring*. In *Practical Credit Risk and Capital Modeling, and Validation: CECL, Basel Capital, CCAR, and Credit Scoring with Examples* (pp. 319-387). Cham: Springer Nature Switzerland.

[16] Chauhan, K., Jani, S., Thakkar, D., Dave, R., Bhatia, J., Tanwar, S., & Obaidat, M. S. (2020, March). Automated machine learning: The new wave of machine learning. In 2020, the 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 205-212). IEEE.

[17] Chen, Y. W., Song, Q., & Hu, X. (2021). Techniques for automated machine learning. *ACM SIGKDD Explorations Newsletter*, 22(2), 35-50.

[18] Katya, E. (2023). Exploring feature engineering strategies for improving predictive models in data science. *Research Journal of Computer Systems and Engineering*, 4(2), 201-215.

[19] Luengo, J., García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2020). Big data preprocessing. Cham: Springer, 1, 1-186.

[20] KarimiAzari, A., Mousavi, N., Mousavi, S. F., & Hosseini, S. (2011). Risk assessment model selection in the construction industry. *Expert systems with applications*, 38(8), 9105-9111.

[21] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. *International Journal of Emerging Research in Engineering and Technology*, 1(3), 35-44. <https://doi.org/10.63282/3050-922X.IJERET-V1I3P105>

[22] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. *International Journal of Emerging Trends in Computer Science and Information Technology*, 1(3), 46-55. <https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106>

[23] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. *International Journal of Emerging Trends in Computer Science and Information Technology*, 1(2), 47-55. <https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106>

[24] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. *International Journal of Emerging Research in Engineering and Technology*, 2(4), 48-58. <https://doi.org/10.63282/3050-922X.IJERET-V2I4P106>

[25] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP's Embedded AI for Predictive Financial Forecasting. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 2(3), 74-82. <https://doi.org/10.63282/3050-9262.IJAIDSMV2I3P108>

[26] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 2(1), 43-53. <https://doi.org/10.63282/3050-9262.IJAIDSMV2I1P106>

[27] Karri, N. (2021). Self-Driving Databases. *International Journal of Emerging Trends in Computer Science and Information Technology*, 2(1), 74-83. <https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10>

[28] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. *International Journal of Emerging Trends in Computer Science and Information Technology*, 3(1), 107-115. <https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112>

[29] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. *International Journal of Emerging Research in Engineering and Technology*, 3(4), 53-62. <https://doi.org/10.63282/3050-922X.IJERET-V3I4P107>

[30] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. *International Journal of Emerging Trends in Computer Science and Information Technology*, 3(4), 42-52. <https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105>

[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(4), 77-85. <https://doi.org/10.63282/xs971f03>

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(1), 87-94. <https://doi.org/10.63282/3050-9262.IJAIDSMV3I1P109>

[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. *International Journal of Emerging Research in Engineering and Technology*, 3(4), 75-83. <https://doi.org/10.63282/3050-922X.IJERET-V3I4P109>

[34] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. *International Journal of AI, BigData, Computational and Management Studies*, 3(1), 99-108. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111>

[35] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(1), 95-113. <https://doi.org/10.63282/3050-9262.IJAIDSMV3I1P111>

[36] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. *International Journal of Emerging Research in Engineering and Technology*, 4(1), 99-111. <https://doi.org/10.63282/3050-922X.IJERET-V4I1P111>

[37] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 4(4), 76-86. <https://doi.org/10.63282/3050-9262.IJAIDSMV4I4P109>

[38] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. *International Journal of Emerging Research in Engineering and Technology*, 4(4), 65-79. <https://doi.org/10.63282/3050-922X.IJERET-V4I4P108>

[39] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. *International Journal of Emerging Trends in Computer Science and Information Technology*, 4(1), 62-74. <https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P10>

[40] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 4(4), 97-104. <https://doi.org/10.63282/3050-9262.IJAIDSMV4I4P111>

[41] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. *International Journal of AI, BigData, Computational and Management Studies*, 4(3), 92-101. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110>

[42] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). AI Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or Biased Algorithmic Decisions. *International Journal of AI, BigData, Computational and Management Studies*, 4(1), 137-146. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114>

[43] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2023). AI-Driven Indexing Strategies. *International Journal of AI, BigData, Computational and Management Studies*, 4(2), 111-119. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112>

[44] Rusum, G. P., & Pappula, K. K. (2024). Platform Engineering: Empowering Developers with Internal Developer Platforms (IDPs). *International Journal of AI, BigData, Computational and Management Studies*, 5(1), 89-101. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110>

[45] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 5(1), 79-91. <https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108>

[46] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 5(1), 117-129. <https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111>

[47] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation. *International Journal of AI, BigData, Computational and Management Studies*, 5(2), 102-116. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111>

[48] Jangam, S. K., & Karri, N. (2024). Hyper Automation, a Combination of AI, ML, and Robotic Process Automation (RPA), to Achieve End-to-End Automation in Enterprise Workflows. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 5(1), 92-103. <https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P109>

[49] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. *International Journal of AI, BigData, Computational and Management Studies*, 5(1), 102-113. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111>

[50] Karri, N. (2024). Real-Time Performance Monitoring with AI. *International Journal of Emerging Trends in Computer Science and Information Technology*, 5(1), 102-111. <https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111>

[51] Tekale, K. M. (2024). AI Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative AI, Bias Detection, and Explainability in Insurance Decisioning. *International Journal of AI, BigData, Computational and Management Studies*, 5(1), 159-166. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116>

[52] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. *International Journal of AI, BigData, Computational and Management Studies*, 1(4), 19-28. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103>

[53] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. *International Journal of Emerging Research in Engineering and Technology*, 1(4), 38-46. <https://doi.org/10.63282/3050-922X.IJERET-V1I4P105>

[54] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. *International Journal of Emerging Trends in Computer Science and Information Technology*, 2(2), 54-64. <https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107>

[55] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and AI. *International Journal of Emerging Research in Engineering and Technology*, 2(2), 55-63. <https://doi.org/10.63282/3050-922X.IJERET-V2I2P108>

[56] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. *International Journal of Emerging Research in Engineering and Technology*, 2(1), 57-66. <https://doi.org/10.63282/3050-922X.IJERET-V2I1P107>

[57] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Predictive Performance Tuning. *International Journal of Emerging Research in Engineering and Technology*, 2(1), 67-76. <https://doi.org/10.63282/3050-922X.IJERET-V2I1P108>

[58] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. *International Journal of AI, BigData, Computational and Management Studies*, 3(2), 81-88. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108>

[59] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. *International Journal of AI, BigData, Computational and Management Studies*, 3(4), 60-69. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107>

[60] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. *International Journal of Emerging Research in Engineering and Technology*, 3(4), 63-74. <https://doi.org/10.63282/3050-922X.IJERET-V3I4P108>

[61] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. *International Journal of Emerging Trends in Computer Science and Information Technology*, 3(4), 64-76. <https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107>

[62] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI Visibility and Business Outcomes. *International Journal of AI, BigData, Computational and Management Studies*, 3(1), 79-88. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109>

[63] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(3), 93-101. <https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110>

[64] Karri, N. (2022). AI-Powered Anomaly Detection. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(2), 122-131. <https://doi.org/10.63282/3050-9262.IJAIDSML-V3I2P114>

[65] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. *International Journal of Emerging Trends in Computer Science and Information Technology*, 3(3), 117-126. <https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113>

[66] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. *International Journal of Emerging Trends in Computer Science and Information Technology*, 4(2), 101-110. <https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110>

[67] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. *International Journal of AI, BigData, Computational and Management Studies*, 4(3), 72-81. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108>

[68] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. *International Journal of AI, BigData, Computational and Management Studies*, 4(3), 82-91. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109>

[69] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. *International Journal of Emerging Research in Engineering and Technology*, 4(2), 106-114. <https://doi.org/10.63282/3050-922X.IJERET-V4I2P111>

[70] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. *International Journal of Emerging Research in Engineering and Technology*, 4(4), 112-119. <https://doi.org/10.63282/3050-922X.IJERET-V4I4P111>

[71] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. *International Journal of Emerging Trends in Computer Science and Information Technology*, 4(1), 85-94. <https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110>

[72] Tekale, K. M., & Rahul, N. (2023). Blockchain and Smart Contracts in Claims Settlement. *International Journal of Emerging Trends in Computer Science and Information Technology*, 4(2), 121-130. <https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P112>

[73] Karri, N. (2023). Intelligent Indexing Based on Usage Patterns and Query Frequency. *International Journal of Emerging Trends in Computer Science and Information Technology*, 4(2), 131-138. <https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P113>

[74] Rusum, G. P., & Anasuri, S. (2024). AI-Augmented Cloud Cost Optimization: Automating FinOps with Predictive Intelligence. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 5(2), 82-94. <https://doi.org/10.63282/3050-9262.IJAIDSM-V5I2P110>

[75] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 5(4), 91-104. <https://doi.org/10.63282/3050-9262.IJAIDSM-V5I4P110>

[76] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. *International Journal of AI, BigData, Computational and Management Studies*, 5(2), 128-140. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113>

[77] Partha Sarathi Reddy Pedda Muntala, "Enterprise AI Governance in Oracle ERP: Balancing Innovation with Risk" *International Journal of Multidisciplinary on Science and Management*, Vol. 1, No. 2, pp. 62-74, 2024.

[78] Jangam, S. K. (2024). Research on Firewalls, Intrusion Detection Systems, and Monitoring Solutions Compatible with QUIC's Encryption and Evolving Protocol Features . *International Journal of AI, BigData, Computational and Management Studies*, 5(2), 90-101. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P110>

[79] Anasuri, S., Pappula, K. K., & Rusum, G. P. (2024). Sustainable Inventory Management Algorithms in SAP ERP Systems. *International Journal of AI, BigData, Computational and Management Studies*, 5(2), 117-127. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P112>

[80] Karri, N. (2024). ML Algorithms that Dynamically Allocate CPU, Memory, and I/O Resources. *International Journal of AI, BigData, Computational and Management Studies*, 5(1), 145-158. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P115>

[81] Tekale, K. M., & Enjam, G. R. (2024). AI Liability Insurance: Covering Algorithmic Decision-Making Risks. *International Journal of AI, BigData, Computational and Management Studies*, 5(4), 151-159. <https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P116>.