Cloud Orchestration with Kubernetes/Docker

Authors

  • Ravi Teja Avireneni Industrial Management, University of Central Missouri, USA. Author
  • Sri Harsha Koneru Computer Information Systems and Information Technology, University of Central Missouri, USA. Author
  • Naresh Kiran Kumar Reddy Yelkoti Information Systems Technology and Information Assurance, Wilmington University, USA. Author
  • Sivaprasad Yerneni Khaga Environmental Engineering, University of New Haven, USA. Author
  • Sanketh Nelavelli Computer Science Technology, Texas A&M University, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V4I1P103

Keywords:

Cloud Orchestration, Kubernetes, Docker Swarm, Containerisation, AI Workloads, ML Pipelines, Scalability, Resource Utilisation, Fault Tolerance, Autoscaling, Hybrid Cloud, Multi-Cloud, Microservices

Abstract

The increasing adoption of artificial intelligence (AI) workloads has placed significant demands on cloud-native infrastructure, particularly in terms of scalability, resource isolation, and automated management of containerised services. Container orchestration platforms such as Kubernetes and Docker have thereby become critical enablers for deploying AI/ML pipelines at scale. For example, research shows that Kubernetes is effective for container orchestration in AI cloud environments (Lokiny, 2022). Additionally, machine-learning–based orchestration frameworks for containers have been explored to improve scheduling, allocation and performance (Zhong et al., 2021). Yet, despite these advances, there remains a paucity of comparative analysis focused on AI workloads especially those that contrast orchestration platforms in hybrid or multi-cloud settings, and that evaluate metrics such as latency, throughput, fault-tolerance, and cost-efficiency. This paper presents a systematic comparative study of Docker- and Kubernetes-based orchestration frameworks for AI workloads, employing a multi-factor benchmark across scalability, resource utilisation, fault resilience, and operational cost. The experimental setup utilises micro-service and deep-learning inference pipelines deployed via Docker Swarm and Kubernetes across public cloud infrastructure. Results indicate that Kubernetes outperforms Docker Swarm in horizontal scaling and fault resilience, while Docker Swarm demonstrates marginal benefits in simplicity of deployment and lower management overhead in small-scale scenarios. Furthermore, the cost-performance trade-offs reveal that orchestration maturity and autoscaling policies favour Kubernetes when workloads grow beyond moderate scale. The paper discusses the implications for AI DevOps teams and cloud architects, offering guidelines for selecting and configuring orchestration technologies aligned with AI workload characteristics. In conclusion, as AI workloads continue shifting toward containerised, distributed, and hybrid-cloud environments, the orchestration strategy plays a pivotal role in ensuring performance, reliability, and cost-efficiency of the underlying infrastructure

References

[1] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2018). Borg, Omega, and Kubernetes. Communications of the ACM, 59(5), 50–57.

[2] Javed, S., Mirza, F., & Rehman, M. (2022). Cloud-native orchestration frameworks for distributed AI: A review. Journal of Cloud Computing, 11(2), 85–97.

[3] Lokiny, N. (2022). Kubernetes for container orchestration in artificial intelligence cloud technologies. International Journal of Science and Research, 11(11), 1536–1538.

[4] Rahman, M., Bhuiyan, M., & Xu, J. (2020). Secure container orchestration for cloud-based applications. IEEE Access, 8, 33110–33125.

[5] Rana, S. (2020). Comparative study of Docker Swarm and Kubernetes orchestration tools. International Journal of Advanced Computer Science and Applications, 11(5), 401–407.

[6] Zhong, Z., Xu, M., Rodriguez, M. A., Xu, C., & Buyya, R. (2021). Machine learning-based orchestration of containers: A taxonomy and future directions. arXiv.

[7] Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications. IEEE. (2020). IEEE code of ethics. IEEE.

[8] Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up and running. O’Reilly Media.

Merkel, D. (2014). Docker: Lightweight Linux containers for consistent development and deployment. Linux Journal, 2014(239), 2.

[9] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2018). Elasticity in cloud computing: State of the art and research challenges. IEEE Transactions on Services Computing, 11(2), 430–447.

[10] Hightower, K., Burns, B., & Beda, J. (2017). Kubernetes: Up and running. O’Reilly Media.

Kavis, M. (2014). Architecting the cloud: Design decisions for cloud computing service models (SaaS, PaaS, and IaaS). John Wiley & Sons.

Rahman, M., Bhuiyan, M., & Xu, J. (2020). Secure container orchestration for cloud-based applications. IEEE Access, 8, 33110–33125.

[11] Saran, K. (2021). Managing machine learning workflows using Kubernetes-based orchestration. IEEE Software, 38(6), 72–78.

[12] Turnbull, J. (2014). The Docker book: Containerization is the new virtualization. James Turnbull.

[13] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. Available at SSRN 5609630.

[14] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[15] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[16] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

[17] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[18] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

[19] Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.

[20] HK, K. (2020). Design of Efficient FSM Based 3D Network on Chip Architecture. INTERNATIONAL JOURNAL OF ENGINEERING, 68(10), 67-73.

[21] Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-6). IEEE.

[22] Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).

[23] Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.

[24] Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.

[25] Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

[26] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[27] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[28] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[29] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[30] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[31] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[32] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2022). Blockchain Technology as a Tool for Cybersecurity: Strengths, Weaknesses, and Potential Applications. Unpublished manuscript.

[33] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[34] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[35] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[36] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[37] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, V., Enokkaren, S. J., & Attipalli, A. (2021). Systematic Review of Artificial Intelligence Techniques for Enhancing Financial Reporting and Regulatory Compliance. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 73-80.

Downloads

Published

2022-01-11

Issue

Section

Articles

How to Cite

[1]
R. T. Avireneni, S. H. Koneru, N. K. K. Reddy Yelkoti, S. Y. Khaga, and S. Nelavelli, “Cloud Orchestration with Kubernetes/Docker”, AIJCST, vol. 4, no. 1, pp. 24–34, Jan. 2022, doi: 10.63282/3117-5481/AIJCST-V4I1P103.

Similar Articles

1-10 of 97

You may also start an advanced similarity search for this article.