AI-Augmented Supply Chain Demand Forecasting in Oracle Fusion SCM

Authors

  • Partha Sarathi Reddy Pedda Muntala Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I2P102

Keywords:

Supply Chain Management, Demand Forecasting, Oracle Fusion Scm, Artificial Intelligence, Machine Learning, Oci Data Science, Forecasting Accuracy, Inventory Optimization, MAPE

Abstract

The rising instability and complexity of supply chains globally require strong forecasting skills to control the service levels, as well as maximize inventories. Oracle Fusion Supply Chain Management (SCM) provides embedded Artificial Intelligence (AI) and Machine Learning (ML) models that improve accuracy in demand forecasting and also offers the use of past data, seasonal trends and current market changes. The paper demonstrates the possibilities of AI-enhanced demand forecasting in the Oracle Fusion SCM by comparing the efficiency of the Oracle embedded ML models with pre-built custom models and external platforms such as TensorFlow and PyTorch, developed using the Oracle Cloud Infrastructure (OCI) Data Science. This study provides a complete evaluation framework by investigating accuracies on forecasting, scalability, interpretability, integration complexity, and performance across Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and several other measures. To test the embedded and the custom solutions, we apply real-world data of a global retail supply chain use case. As our results show, native ML in Oracle is a convenient way of getting the job done and integrating with other services, but under some conditions, custom models with OCI Data Science can be better. We conclude by providing an advisory to help us select between native and custom ML based on business requirements, data access, and the maturity of this operation

References

[1] Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

[2] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

[3] Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting methods and applications. John wiley & sons.

[4] Bertsimas, D., & Kallus, N. (2020). From predictive to prescriptive analytics. Management Science, 66(3), 1025-1044.

[5] Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert systems with applications, 140, 112896.

[6] Spoorthi, M., Rao, S. S., Mishra, S., Rajagopal, S. M., & Prashanth, M. (2024, September). Advancing Supply Chain Management: Cloud-Based Demand Forecasting Solutions. In 2024 3rd International Conference for Advancement in Technology (ICONAT) (pp. 1-6). IEEE.

[7] Hao, R. (2024, October). Streamlining SCM: Integrating Demand Forecasting and Inventory Optimization. In 2024 2nd International Conference on Management Innovation and Economic Development (MIED 2024) (pp. 550-558). Atlantis Press.

[8] Karumanchi, M. D., Sheeba, J. I., & Devaneyan, S. P. (2022). Integrated Internet of Things with cloud developed for data integrity problems in supply chain management. Measurement: Sensors, 24, 100445.

[9] Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1), 53.

[10] Datta, S., Granger, C. W. J., Barari, M., & Gibbs, T. (2007). Management of supply chain: an alternative modelling technique for forecasting. Journal of the Operational Research Society, 58(11), 1459-1469.

[11] Feizabadi, J. (2022). Machine learning for demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119-142.

[12] Khan, M. A., Saqib, S., Alyas, T., Rehman, A. U., Saeed, Y., Zeb, A., ... & Mohamed, E. M. (2020). An effective demand forecasting model using business intelligence empowered with machine learning. IEEE Access, 8, 116013-116023.

[13] Joseph Tsidulko, Benefits of AI in the Supply Chain, online. Oracle, https://www.oracle.com/in/scm/ai-supply-chain/

[14] Joseph, J. G., Junior, A. O., & Boxell, M. (2023). Oracle Cloud Infrastructure Guide to Building Cloud Native Applications. Pearson Education.

[15] Jakóbczyk, M. T. (2020). Practical Oracle Cloud Infrastructure. Apress.

[16] Abellera, R., & Bulusu, L. (2018). Oracle business intelligence with machine learning. Artificial Intelligence Techniques in OBIEE for Actionable BI, 10, 978-1.

[17] Oracle AI Agents Help Transform Supply Chain Workflows, online. ERP Today, online. https://erp.today/oracle-ai-agents-help-transform-supply-chain-workflows/

[18] Jose, V. R. R. (2017). Percentage and Relative Error Measures in Forecast Evaluation. Operations Research, 65(1), 200-211.

[19] Tulli, S. K. C. (2024). Leveraging Oracle NetSuite to enhance supply chain optimisation in manufacturing. International Journal of Acta Informatica, 3(1), 59-75.

[20] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[21] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[22] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[23] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[24] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[25] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[26] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[27] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Predictive Performance Tuning. International Journal of Emerging Research in Engineering and Technology, 2(1), 67-76. https://doi.org/10.63282/3050-922X.IJERET-V2I1P108

[28] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108

[29] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[30] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

[31] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[32] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[33] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[34] Karri, N. (2022). AI-Powered Anomaly Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 122-131. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I2P114

[35] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[36] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

[37] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[38] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

[39] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111

[40] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[41] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[42] Tekale, K. M., & Rahul, N. (2023). Blockchain and Smart Contracts in Claims Settlement. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 121-130. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P112

[43] Karri, N. (2023). Intelligent Indexing Based on Usage Patterns and Query Frequency. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 131-138. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P113

[44] Rusum, G. P., & Anasuri, S. (2024). AI-Augmented Cloud Cost Optimization: Automating FinOps with Predictive Intelligence. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(2), 82-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P110

[45] Enjam, G. R., & Tekale, K. M. (2024). Self-Healing Microservices for Insurance Platforms: A Fault-Tolerant Architecture Using AWS and PostgreSQL. International Journal of AI, BigData, Computational and Management Studies, 5(1), 127-136. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113

[46] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[47] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[48] Jangam, S. K. (2024). Research on Firewalls, Intrusion Detection Systems, and Monitoring Solutions Compatible with QUIC’s Encryption and Evolving Protocol Features . International Journal of AI, BigData, Computational and Management Studies, 5(2), 90-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P110

[49] Anasuri, S., Pappula, K. K., & Rusum, G. P. (2024). Sustainable Inventory Management Algorithms in SAP ERP Systems. International Journal of AI, BigData, Computational and Management Studies, 5(2), 117-127. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P112

[50] Karri, N. (2024). ML Algorithms that Dynamically Allocate CPU, Memory, and I/O Resources. International Journal of AI, BigData, Computational and Management Studies, 5(1), 145-158. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P115

[51] Tekale, K. M., & Enjam, G. R. (2024). AI Liability Insurance: Covering Algorithmic Decision-Making Risks. International Journal of AI, BigData, Computational and Management Studies, 5(4), 151-159. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P116

[52] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[53] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[54] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[55] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[56] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[57] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[58] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

[59] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[60] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[61] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[62] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

[63] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[64] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[65] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Using ML Models to Detect Unusual Database Activity or Performance Degradation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 102-110. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P111

[66] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[67] Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an AI-Augmented Dev World. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110

[68] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[69] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

[70] Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110

[71] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[72] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[73] Tekale, K. M. (2023). Cyber Insurance Evolution: Addressing Ransomware and Supply Chain Risks. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 124-133. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P113

[74] Karri, N., & Jangam, S. K. (2023). Role of AI in Database Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 89-97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P110

[75] Rusum, G. P. (2024). Trustworthy AI in Software Systems: From Explainability to Regulatory Compliance. International Journal of Emerging Research in Engineering and Technology, 5(1), 71-81. https://doi.org/10.63282/3050-922X.IJERET-V5I1P109

[76] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[77] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[78] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[79] Jangam, S. K. (2024). Advancements and Challenges in Using AI and ML to Improve API Testing Efficiency, Coverage, and Effectiveness. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(2), 95-106. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P111

[80] Anasuri, S. (2024). Secure Software Development Life Cycle (SSDLC) for AI-Based Applications. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 104-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P110

[81] Karri, N., & Jangam, S. K. (2024). Semantic Search with AI Vector Search. International Journal of AI, BigData, Computational and Management Studies, 5(2), 141-150. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P114

[82] Tekale, K. M., & Rahul, N. (2024). AI Bias Mitigation in Insurance Pricing and Claims Decisions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 138-148. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P113.

Downloads

Published

2025-03-07

Issue

Section

Articles

How to Cite

[1]
P. S. R. Pedda Muntala, “AI-Augmented Supply Chain Demand Forecasting in Oracle Fusion SCM”, AIJCST, vol. 7, no. 2, pp. 15–28, Mar. 2025, doi: 10.63282/3117-5481/AIJCST-V7I2P102.

Similar Articles

1-10 of 104

You may also start an advanced similarity search for this article.