Traffic Engineering for Massive Data Flows

Authors

  • Prasanth Kosaraju Dataquest Corp. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V5I3P103

Keywords:

Traffic Engineering, Massive Data Flows, Software-Defined Networking (SDN), Network Function Virtualization (NFV), Machine Learning, Flow Optimization, Data Center Networks, Network Scalability, Adaptive Routing, AI-Driven Networking

Abstract

The exponential growth of data-intensive applications ranging from cloud computing and real-time analytics to IoT and AI-driven workloads has led to unprecedented challenges in managing massive data flows across large-scale network infrastructures. Traditional traffic engineering (TE) mechanisms, designed for static and predictable traffic patterns, are increasingly inadequate in ensuring optimal performance, scalability, and reliability. This research explores modern TE frameworks that integrate software-defined networking (SDN), network function virtualization (NFV), and machine learning (ML) to dynamically optimize traffic flow and resource allocation in high-throughput environments. The paper examines the architectural evolution of TE, advanced optimization algorithms, and adaptive routing techniques capable of responding to real-time network variations. Moreover, it evaluates the trade-offs between centralized and distributed control paradigms in large-scale data centers and backbone networks. By consolidating current advances and identifying persistent challenges, this study provides a comprehensive understanding of next-generation traffic engineering strategies designed to support massive data flows in the era of intelligent and autonomous networksa

References

[1] Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center network architecture. ACM SIGCOMM Computer Communication Review, 38(4), 63–74. https://doi.org/10.1145/1402946.1402967

[2] Jain, S., Kumar, A., Mandal, S., et al. (2013). B4: Experience with a globally-deployed software-defined WAN. ACM SIGCOMM Computer Communication Review, 43(4), 3–14. https://doi.org/10.1145/2534169.2486019

[3] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., & Wattenhofer, R. (2013). Achieving high utilization with software-driven WAN. ACM SIGCOMM, 43(4), 15–26.

[4] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., & Turner, J. (2008). OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.

[5] Botero, J. F., Hesselbach, X., Fischer, A., Beck, M. T., & De Meer, H. (2013). Energy efficient virtual network embedding. IEEE Communications Letters, 16(5), 756–759. https://doi.org/10.1109/LCOMM.2012.031912.111978

[6] Mestres, A., Rodriguez-Natal, A., Carner, J., et al. (2017). Knowledge-defined networking. ACM SIGCOMM Computer Communication Review, 47(3), 2–10. https://doi.org/10.1145/3138808.3138810

[7] Valadarsky, A., Schapira, M., Shahaf, D., & Tamar, A. (2017). Learning to route with deep reinforcement learning. Proceedings of the 16th ACM Workshop on Hot Topics in Networks (HotNets). https://doi.org/10.1145/3152434.3152441

[8] He, J., Song, W., & Li, H. (2019). Machine learning-based traffic engineering optimization for software-defined networks. IEEE Access, 7, 138122–138134. https://doi.org/10.1109/ACCESS.2019.2942361

[9] Qin, Y., Huang, T., Chen, L., & Li, J. (2020). A survey on AI-enabled network management and orchestration in SDN/NFV environments. IEEE Communications Surveys & Tutorials, 22(4), 2634–2667. https://doi.org/10.1109/COMST.2020.3015422

[10] Vissicchio, S., Vanbever, L., & Bonaventure, O. (2015). Opportunities and research challenges of hybrid software-defined networks. ACM SIGCOMM Computer Communication Review, 44(2), 70–75.

[11] Xu, K., Wang, F., & Yang, J. (2021). AI-driven traffic engineering for next-generation data center networks: A survey. IEEE Transactions on Network and Service Management, 18(3), 2305–2322. https://doi.org/10.1109/TNSM.2021.3070178

[12] Cisco Systems. (2022). Intent-Based Networking and Autonomous Traffic Optimization. Cisco White Paper.

[13] IETF RFC 4655. (2006). A Path Computation Element (PCE)-Based Architecture. Internet Engineering Task Force.

[14] Huawei Technologies. (2023). iMaster NCE: Intelligent Network Control and Automation Platform. Technical Overview.

[15] Zhang, X., Zhang, L., & Wu, J. (2023). Digital twin networking for intelligent traffic engineering. IEEE Network, 37(1), 142–150. https://doi.org/10.1109/MNET.1223456

[16] Keti, F., & Askar, S. (2015). Emulation of software-defined networks using Mininet in different environments. Proceedings of the 6th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 205–210.

[17] Krishnamurthy, S., & Raghavan, S. (2019). Reinforcement learning for adaptive traffic engineering in SDN. IEEE Transactions on Network and Service Management, 16(3), 1023–1037.

[18] Wang, H., Xie, K., Zhang, X., & Xu, J. (2020). Intelligent traffic prediction and flow control with machine learning for large-scale data centers. IEEE Access, 8, 194573–194585.

[19] Roy, A., Zeng, H., Bagga, J., et al. (2015). Inside the social network’s (datacenter) network. ACM SIGCOMM Computer Communication Review, 45(4), 123–137.

[20] Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: An intellectual history of programmable networks. ACM SIGCOMM Computer Communication Review, 44(2), 87–98.

[21] Mohan, P., & Purohit, S. (2020). AI-driven SDN for data center traffic engineering: Challenges and opportunities. Journal of Network and Computer Applications, 166, 102713.

[22] Guo, C., Wu, H., Tan, K., et al. (2009). BCube: A high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Computer Communication Review, 39(4), 63–74.

[23] Ahmed, M. E., & Kim, H. (2019). Security for SDN-based networks: A comprehensive review. IEEE Communications Surveys & Tutorials, 21(1), 663–688.

[24] Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., Turck, F. D., & Boutaba, R. (2016). Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 18(1), 236–262.

[25] Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2014). A roadmap for traffic engineering in software-defined networks. Computer Networks, 71, 1–30.

[26] Bianzino, A. P., Chaudet, C., Rossi, D., & Rougier, J.-L. (2012). A survey of green networking research. IEEE Communications Surveys & Tutorials, 14(1), 3–20.

[27] Zhang, Y., Zheng, W., & Qian, Y. (2022). Explainable artificial intelligence for networking: A survey. IEEE Internet of Things Journal, 9(17), 15836–15852.

[28] Doriguzzi-Corin, R., Siracusa, D., Ferretti, S., & Fontanini, M. (2021). Machine learning-based traffic engineering: A survey. Computer Networks, 197, 108214.

[29] Panwar, N., Sharma, S., & Singh, A. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84.

[30] Rahman, M., & Boutaba, R. (2021). Toward self-driving networks: A survey of autonomous networking research. IEEE Communications Surveys & Tutorials, 23(1), 74–111.

[31] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. Available at SSRN 5609630.

[32] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[33] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[34] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

[35] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[36] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

[37] Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.

[38] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. (2022). Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies, 1(2), 10-56472.

[39] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[40] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).

[41] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. Available at SSRN 5538121.

[42] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153-164.

[43] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.

[44] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. Available at SSRN 5515262.

[45] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS. WEAKNESSES, AND POTENTIAL APPLICATIONS.

[46] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

[47] Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.

[48] Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

[49] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[50] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[51] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[52] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[53] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[54] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[55] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[56] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[57] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[58] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, V., Enokkaren, S. J., & Attipalli, A. (2021). Systematic Review of Artificial Intelligence Techniques for Enhancing Financial Reporting and Regulatory Compliance. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 73-80.

[59] Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

[60] Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

[61] Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning.

[62] Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

[63] Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

[64] Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

Downloads

Published

2023-05-09

Issue

Section

Articles

How to Cite

[1]
P. Kosaraju, “Traffic Engineering for Massive Data Flows”, AIJCST, vol. 5, no. 3, pp. 23–41, May 2023, doi: 10.63282/3117-5481/AIJCST-V5I3P103.

Similar Articles

1-10 of 107

You may also start an advanced similarity search for this article.