Java-Based Big Data Frameworks: Architecture, Challenges, and Future Directions

Authors

  • Stephen Eteng University of Ibadan Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V6I5P104

Keywords:

Java-Based Big Data Frameworks, Apache Hadoop, Apache Spark, Apache Flink, Apache Kafka, Distributed Systems Architecture, Big Data Processing, Scalability, Fault Tolerance, JVM Performance Optimization, Real-Time Data Processing, Cloud-Native Big Data, Data Streaming Frameworks, Machine Learning Integration

Abstract

The rapid growth of data generated by modern digital systems has increased the demand for scalable and efficient Big Data processing frameworks. Java-based Big Data frameworks have become central to addressing these demands due to their platform independence, robustness, and extensive ecosystem support. The purpose of this study is to examine the architecture, challenges, and future directions of widely adopted Java-based Big Data frameworks. This research employs a qualitative, literature-based methodology, analyzing peer-reviewed articles, technical documentation, and industry reports related to frameworks such as Apache Hadoop, Apache Spark, Apache Flink, and Apache Kafka. A comparative and thematic analysis approach is used to identify common architectural patterns, operational challenges, and emerging trends. The findings reveal that Java-based Big Data frameworks share layered, distributed architectures that emphasize fault tolerance and horizontal scalability. Key challenges include JVM-related performance overhead, memory management complexity, and system configuration difficulty. The study also identifies a clear shift toward real-time data processing, cloud-native deployment models, and tighter integration with machine learning workflows. In conclusion, Java-based Big Data frameworks remain foundational to modern data processing systems. Despite existing challenges, ongoing advancements in JVM technologies and distributed system design continue to enhance their performance and adaptability, ensuring their continued relevance in evolving Big Data environments.

References

[1] Akidau, T., Chernyak, S., & Lax, R. (2018). Streaming systems: The what, where, when, and how of large-scale data processing. O’Reilly Media.

[2] Armbrust, M., et al. (2015). Spark SQL: Relational data processing in Spark. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1383–1394. https://doi.org/10.1145/2723372.2742797

[3] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache Flink™: Stream and batch processing in a single engine. IEEE Data Engineering Bulletin, 38(4), 28–38.

[4] Grolinger, K., Hayes, M., Higashino, W. A., L’Heureux, A., Allison, D. S., & Capretz, M. A. M. (2014). Challenges for mapreduce in big data. Proceedings of the IEEE World Congress on Services, 182–189. https://doi.org/10.1109/SERVICES.2014.41

[5] Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning Spark: Lightning-fast data analysis. O’Reilly Media.

[6] Kleppmann, M. (2017). Designing data-intensive applications. O’Reilly Media.

[7] Kreps, J. (2014). Questioning the lambda architecture. O’Reilly Radar.

[8] Li, Y., et al. (2018). Benchmarking big data systems: A review. IEEE Transactions on Services Computing, 11(3), 580–597. https://doi.org/10.1109/TSC.2016.2526988

[9] Pérez, J., et al. (2020). Performance analysis of JVM garbage collectors for big data applications. Journal of Systems and Software, 165, 110560. https://doi.org/10.1016/j.jss.2020.110560

[10] Sadalage, P. J., & Fowler, M. (2012). NoSQL distilled: A brief guide to the emerging world of polyglot persistence. Addison-Wesley.

[11] Vavilapalli, V. K., et al. (2013). Apache Hadoop YARN: Yet another resource negotiator. Proceedings of the ACM Symposium on Cloud Computing, 1–16. https://doi.org/10.1145/2523616.2523633

[12] Verbitski, A., et al. (2017). Amazon Aurora: Design considerations for high throughput cloud-native relational databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1041–1052. https://doi.org/10.1145/3035918.3056101

[13] Zhang, Q., Chen, M., Li, L., & Li, H. (2019). A survey on big data systems. IEEE Access, 7, 145993–146010.

[14] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492

[15] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. Proceedings of the NetDB, 1–7.

[16] Marz, N., & Warren, J. (2015). Big data: Principles and best practices of scalable real-time data systems. Manning Publications.

[17] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[18] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[19] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[20] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[21] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[22] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[23] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[24] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[25] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[26] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[27] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[28] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2022). Blockchain Technology as a Tool for Cybersecurity: Strengths, Weaknesses, and Potential Applications. Unpublished manuscript.

[29] Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

[30] Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

[31] Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

[32] Tamilmani, V., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2022). Forecasting Financial Trends Using Time Series Based ML-DL Models for Enhanced Business Analytics. Available at SSRN 5837143.

[33] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[34] Attipalli, A., Mamidala, J. V., KURMA, J., Bitkuri, V., Kendyala, R., & Enokkaren, S. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning. Available at SSRN 5741265.

[35] Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

[36] Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

[37] Attipalli, A., Enokkaren, S., KURMA, J., Mamidala, J. V., Kendyala, R., & BITKURI, V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Available at SSRN 5741282.

[38] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[39] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[40] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient machine learning approaches for intrusion identification of DDoS attacks in cloud networks. Available at SSRN 5515262.

[41] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[42] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.

[43] Namburi, V. D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Rajendran, D. (2023). Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 118-128.

[44] Rajendran, D., Maniar, V., Tamilmani, V., Namburi, V. D., Singh, A. A. S., & Kothamaram, R. R. (2023). CNN-LSTM Hybrid Architecture for Accurate Network Intrusion Detection for Cybersecurity. Journal Of Engineering And Computer Sciences, 2(11), 1-13.

[45] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., Singh, A. A., & Maniar, V. (2023). Exploring the Influence of ERP-Supported Business Intelligence on Customer Relationship Management Strategies. International Journal of Technology, Management and Humanities, 9(04), 179-191.

[46] Singh, A. A. S. S., Mania, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D. N., & Tamilmani, V. (2023). Exploration of Java-Based Big Data Frameworks: Architecture, Challenges, and Opportunities.Journal of Artificial Intelligence & Cloud Computing,2(4), 1-8.

[47] Tamilmani, V., Namburi, V. D., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2023). Real-Time Identification of Phishing Websites Using Advanced Machine Learning Methods. Available at SSRN 5837142.

[48] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey of Blockchain-Enabled Supply Chain Processes in Small and Medium Enterprises for Transparency and Efficiency. International Journal of Humanities and Information Technology, 5(04), 84-95.

[49] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2023). Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 112-123.

[50] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Humanities and Information Technology, 5(02), 53-65.

[51] Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. Machine Learning Models Powered by Big Data for Health Insurance Expense Forecasting. International Research Journal of Economics and Management Studies IRJEMS, 2(1).

[52] Bhumireddy, J. R. (2023). A Hybrid Approach for Melanoma Classification using Ensemble Machine Learning Techniques with Deep Transfer Learning Article in Computer Methods and Programs in Biomedicine Update. Available at SSRN 5667650.

[53] From Fragmentation to Focus: The Benefits of Centralizing Procurement. (2023). International Journal of Research and Applied Innovations, 6(6), 9820-9833. https://doi.org/10.15662/IJRAI.2023.0606006.

[54] S. K. Sunkara, A. I. Ashirova, Y. Gulora, R. R. Baireddy, T. Tiwari and G. V. Sudha, "AI-Driven Big Data Analytics in Cloud Environments: Applications and Innovations," 2025 World Skills Conference on Universal Data Analytics and Sciences (WorldSUAS), Indore, India, 2025, pp. 1-6, doi: 10.1109/WorldSUAS66815.2025.11199123.

Downloads

Published

2024-09-15

Issue

Section

Articles

How to Cite

[1]
S. Eteng, “Java-Based Big Data Frameworks: Architecture, Challenges, and Future Directions”, AIJCST, vol. 6, no. 5, pp. 37–43, Sep. 2024, doi: 10.63282/3117-5481/AIJCST-V6I5P104.

Similar Articles

11-20 of 134

You may also start an advanced similarity search for this article.