Serverless Insurance Platforms: Leveraging AWS Lambda for Guidewire Claim Events

Authors

  • Gowtham Reddy Enjam Independent Researcher, USA. Author
  • Sandeep Channapura Chandragowda Independent Researcher, USA. Author
  • Komal Manohar Tekale Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I3P107

Keywords:

Serverless Computing, AWS Lambda, Guidewire ClaimCenter, Event-driven Architecture, Cloud Insurance, Claims Processing, API Gateway, DynamoDB, Digital Transformation

Abstract

The insurance industry has undergone major digital transformation in recent years, yet traditional systems continue to face challenges such as scalability limitations, high operational costs, and latency. This paper explores the adoption of a serverless architecture using AWS Lambda integrated with Guidewire ClaimCenter to enhance claims processing efficiency. Guidewire ClaimCenter generates continuous event streams—such as claim creation, status updates, fraud alerts, and settlements—that require real-time processing for improved automation and faster settlement cycles. The proposed framework leverages AWS Lambda, Amazon SNS, API Gateway, and DynamoDB to establish an event-driven, scalable, and cost-effective architecture. Lambda functions deliver micro-level modularity, enabling dynamic business logic execution without dedicated server infrastructure. This model reduces total cost of ownership, enhances fault tolerance, and optimizes resource utilization through AWS’s auto-scaling and pay-per-use features. Using a hybrid research approach—including architecture design, simulated claim events, and performance analysis—the study shows significant improvements over traditional service-oriented systems, with 42% lower processing latency, 37% cost reduction, and 99.99% availability. Beyond technical gains, the framework also improves compliance, disaster recovery, and customer trust. Future enhancements include machine learning-based anomaly detection, blockchain-enabled claim auditing, and cross-platform integration for a more intelligent and resilient insurance ecosystem

References

[1] Jangda, A., Pinckney, D., Brun, Y., & Guha, A. (2019). Formal foundations of serverless computing. Proceedings of the ACM on Programming Languages, 3(OOPSLA), 1-26.

[2] Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., ... & Iosup, A. (2020). A review of serverless use cases and their characteristics. arXiv preprint arXiv:2008.11110.

[3] Wen, J., Chen, Z., Jin, X., & Liu, X. (2023). Rise of the planet of serverless computing: A systematic review. ACM Transactions on Software Engineering and Methodology, 32(5), 1-61.

[4] Grogan, J., Mulready, C., McDermott, J., Urbanavicius, M., Yilmaz, M., Abgaz, Y., ... & Clarke, P. (2020, August). A multivocal literature review of function-as-a-service (faas) infrastructures and implications for software developers. In European Conference on Software Process Improvement (pp. 58-75). Cham: Springer International Publishing.

[5] Ginzburg, S., & Freedman, M. J. (2020, December). Serverless isn't server-less: Measuring and exploiting resource variability on cloud faas platforms. In Proceedings of the 2020 Sixth International Workshop on Serverless Computing (pp. 43-48).

[6] Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., & Guo, M. (2022). The serverless computing survey: A technical primer for design architecture. ACM Computing Surveys (CSUR), 54(10s), 1-34.

[7] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa, R. A., ... & Patterson, D. A. (2021). What serverless computing is and should become: The next phase of cloud computing. Communications of the ACM, 64(5), 76-84.

[8] Jackson, D., & Clynch, G. (2018, December). An investigation of the impact of language runtime on the performance and cost of serverless functions. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) (pp. 154-160). IEEE.

[9] Rajan, R. A. P. (2018, December). Serverless architecture-a revolution in cloud computing. In 2018 Tenth International Conference on Advanced Computing (ICoAC) (pp. 88-93). IEEE.

[10] Hassan, H. B., Barakat, S. A., & Sarhan, Q. I. (2021). Survey on serverless computing. Journal of Cloud Computing, 10(1), 39.

[11] McGrath, G., & Brenner, P. R. (2017, June). Serverless computing: Design, implementation, and performance. In 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW) (pp. 405-410). IEEE.

[12] Kumar, P., Taneja, S., Mukul, & Özen, E. (2023). Digital transformation of the insurance industry–A case of the Indian insurance sector. The Impact of climate change and sustainability standards on the insurance market, 85-106.

[13] Building a modern, event-driven application for insurance claims processing – Part 1, amazon, 2023. online. https://aws.amazon.com/blogs/industries/building-a-modern-event-driven-application-for-insurance-claims-processing-part-1/

[14] Building a modern, event-driven application for insurance claims processing – Part 2, amazon, 2023. online. https://aws.amazon.com/blogs/industries/building-a-modern-event-driven-application-for-insurance-claims-processing-part-2/

[15] Eckert, C., Eckert, J., & Zitzmann, A. (2021). The status quo of digital transformation in insurance sales: An empirical analysis of the german insurance industry. Zeitschrift für die gesamte Versicherungswissenschaft, 110(2), 133-155.

[16] Siriwardena, P. (2014). Advanced API Security. Apress: New York, NY, USA.

[17] Sbarski, P., & Kroonenburg, S. (2017). Serverless architectures on AWS: with examples using Aws Lambda. Simon and Schuster.

[18] Manner, J., Endreß, M., Heckel, T., & Wirtz, G. (2018, December). Cold start influencing factors in function as a service. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) (pp. 181-188). IEEE.

[19] Adavelli, S.R. (2022). Digital Transformation in Insurance: How Guidewire, AWS,and Snowflake Converge for Future-Ready Solutions. International Journal of Computer Science and Information Technology Research (IJCSITR), 3(1), 95-114

[20] Gulabani, S. (2018). Amazon Web Services Bootcamp: Develop a scalable, reliable, and highly available cloud environment with AWS. Packt Publishing Ltd.

[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[24] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[25] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[26] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[27] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[28] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[29] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[30] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[34] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[35] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[36] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[37] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[38] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[39] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

[40] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[41] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[42] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). AI Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or Biased Algorithmic Decisions. International Journal of AI, BigData, Computational and Management Studies, 4(1), 137-146. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114

[43] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2023). AI-Driven Indexing Strategies. International Journal of AI, BigData, Computational and Management Studies, 4(2), 111-119. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112

[44] Rusum, G. P., & Pappula, K. K. (2024). Platform Engineering: Empowering Developers with Internal Developer Platforms (IDPs). International Journal of AI, BigData, Computational and Management Studies, 5(1), 89-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110

[45] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[46] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[47] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation. International Journal of AI, BigData, Computational and Management Studies, 5(2), 102-116. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111

[48] Jangam, S. K., & Karri, N. (2024). Hyper Automation, a Combination of AI, ML, and Robotic Process Automation (RPA), to Achieve End-to-End Automation in Enterprise Workflows. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 92-103. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P109

[49] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. International Journal of AI, BigData, Computational and Management Studies, 5(1), 102-113. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111

[50] Karri, N. (2024). Real-Time Performance Monitoring with AI. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 102-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111

[51] Tekale, K. M. (2024). AI Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative AI, Bias Detection, and Explainability in Insurance Decisioning. International Journal of AI, BigData, Computational and Management Studies, 5(1), 159-166. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116

[52] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[53] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[54] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[55] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[56] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[57] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

[58] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[59] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[60] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[61] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.IJERET-V3I1P110

[62] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110

[63] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[64] Karri, N. (2022). Predictive Maintenance for Database Systems. International Journal of Emerging Research in Engineering and Technology, 3(1), 105-115. https://doi.org/10.63282/3050-922X.IJERET-V3I1P111

[65] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[66] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111

[67] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[68] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[69] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109

[70] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[71] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[72] Tekale , K. M. (2023). AI-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[73] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

[74] Rusum, G. P., & Anasuri, S. (2024). AI-Augmented Cloud Cost Optimization: Automating FinOps with Predictive Intelligence. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(2), 82-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P110

[75] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[76] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[77] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111

[78] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

[79] Anasuri, S. (2024). Secure Software Development Life Cycle (SSDLC) for AI-Based Applications. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 104-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P110

[80] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

[81] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113.

Downloads

Published

2025-05-20

Issue

Section

Articles

How to Cite

[1]
G. R. Enjam, S. C. Chandragowda, and K. M. Tekale, “Serverless Insurance Platforms: Leveraging AWS Lambda for Guidewire Claim Events”, AIJCST, vol. 7, no. 3, pp. 86–98, May 2025, doi: 10.63282/3117-5481/AIJCST-V7I3P107.

Similar Articles

1-10 of 98

You may also start an advanced similarity search for this article.