Adapting to Regulatory Changes with AI Automating Compliance in Guidewire's Claims Processes
DOI:
https://doi.org/10.63282/3117-5481/AIJCST-V7I5P101Keywords:
Regulatory Compliance, Artificial Intelligence, Guidewire Claimcenter, Insurance Technology, Machine Learning, Natural Language Processing, Claims Automation, Robotic Process AutomationAbstract
It is still hard but important to make sure that insurance companies follow the rules in a world where the rules change quickly. With the rise of artificial intelligence (AI), it is now possible to automate these compliance processes on a large scale, especially on core platforms like Guidewire ClaimCenter. This paper looks at how AI can help the insurance industry deal with changes in regulations, focusing on how intelligent automation can make Guidewire's claims processes better. We examine an integrated strategy that includes Natural Language Processing (NLP), Machine Learning (ML), and Robotic Process Automation (RPA) to make it easier to keep up with compliance, map out regulations, sort through claims, and manage documents. The suggested method makes operations run more smoothly, lowers the risk of not following the rules, and makes sure that the rules are followed right away. We use a prototype integration in a simulated Guidewire environment to show how AI algorithms can automatically take in and understand changes to policies, update rule sets, and make logs that regulators can check. The results show that compliance mapping is 90% more accurate, the claims cycle is 60% faster, and manual work has gone down by 70%. This study demonstrates the feasibility of AI-driven compliance and provides insurers with a strategy to enhance the security of their claims systems amidst evolving regulations
References
[1] Aquino, Y. S. J., Rogers, W. A., Jacobson, S. L. S., Richards, B., Houssami, N., Woode, M. E., & Carter, S. M. (2024). Defining change: Exploring expert views about the regulatory challenges in adaptive artificial intelligence for healthcare. Health Policy and Technology, 13(3), 100892.
[2] Maas, M. M. (2022). Aligning AI regulation to sociotechnical change. In The Oxford Handbook of AI Governance.
[3] Connor, S., Li, T., Roberts, R., Thakkar, S., Liu, Z., & Tong, W. (2022). Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury. Frontiers in Artificial Intelligence, 5, 1034631.
[4] Reddy, A. S. (2024). Autonomous Claims Processing: Building Self-Driving Workflows with Gen AI and ML in Guidewire.
[5] Shreedharan, K. K. (2025). Automated Claims Processing in Guidewire ClaimCenter: Enhancing Efficiency and Accuracy in the Insurance Industry. Available at SSRN 5143235.
[6] Elgammal, A., Turetken, O., van den Heuvel, W. J., & Papazoglou, M. (2016). Formalizing and applying compliance patterns for business process compliance. Software & Systems Modeling, 15(1), 119-146.
[7] Anagnostopoulos, I. (2018). Fintech and regtech: Impact on regulators and banks. Journal of economics and business, 100, 7-25.
[8] Arner, D. W., Barberis, J., & Buckey, R. P. (2016). FinTech, RegTech, and the reconceptualization of financial regulation. Nw. J. Int'l L. & Bus., 37, 371.
[9] Freij, Å. (2020). Using technology to support financial services regulatory compliance: current applications and prospects of regtech. Journal of Investment Compliance, 21(2/3), 181-190.
[10] Butler, T., & O’Brien, L. (2019). Understanding RegTech for digital regulatory compliance. Disrupting Finance, 85-102.
[11] Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using artificial intelligence to create value in insurance. International Journal of Bank Marketing, 36(6), 1145-1168.
[12] Lior, A. (2021). Insuring AI: The role of insurance in artificial intelligence regulation. Harv. JL & Tech., 35, 467.
[13] Adavelli, R. T. M. S. R. (2019). Harnessing Guidewire Claim Center for Optimized Claim Management: A Blueprint for Efficiency and Customer Satisfaction.
[14] Malsane, S., Matthews, J., Lockley, S., Love, P. E., & Greenwood, D. (2015). Development of an object model for automated compliance checking. Automation in construction, 49, 51-58.
[15] Cejas, O. A., Azeem, M. I., Abualhaija, S., & Briand, L. C. (2023). NLP-based automated compliance checking of data processing agreements against gdpr. IEEE Transactions on Software Engineering, 49(9), 4282-4303.
[16] Kruiper, R., Kumar, B., Watson, R., Sadeghineko, F., Gray, A., & Konstas, I. (2024). A platform-based Natural Language processing-driven strategy for digitalising regulatory compliance processes for the built environment. Advanced Engineering Informatics, 62, 102653.
[17] Van der Aalst, W. M., Bichler, M., & Heinzl, A. (2018). Robotic process automation. Business & Information Systems Engineering, 60(4), 269-272.
[18] Aguirre, S., & Rodriguez, A. (2017, August). Automation of a business process using robotic process automation (RPA): A case study. In Workshop on engineering applications (pp. 65-71). Cham: Springer International Publishing.
[19] Stettinger, G., Weissensteiner, P., & Khastgir, S. (2024). Trustworthiness assurance assessment for high-risk AI-based systems. IEEE Access, 12, 22718-22745.
[20] Jimoh, R. A., Ibrahim, K., Oyewobi, L. O., & Ayantoye, M. A. (2019). Stakeholders' compliance level on the Insurance of buildings under construction in Abuja, Nigeria.
[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
[23] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
[24] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
[25] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
[26] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
[27] Karri, N., & Jangam, S. K. (2021). Security and Compliance Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 73-82. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P109
[28] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
[29] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
[30] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108
[31] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110
[32] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
[33] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
[34] Karri, N. (2022). Leveraging Machine Learning to Predict Future Storage and Compute Needs Based on Usage Trends. International Journal of AI, BigData, Computational and Management Studies, 3(2), 89-98. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P109
[35] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111
[36] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
[37] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
[38] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107
[39] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
[40] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
[41] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
[42] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). AI Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or Biased Algorithmic Decisions. International Journal of AI, BigData, Computational and Management Studies, 4(1), 137-146. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114
[43] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115
[44] Guru Pramod Rusum, "Green ML: Designing Energy-Efficient Machine Learning Pipelines at Scale" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 49-61, 2024.
[45] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2024). Chatbot & Voice Bot Integration with Guidewire Digital Portals. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 82-93. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P109
[46] Kiran Kumar Pappula, "Transformer-Based Classification of Financial Documents in Hybrid Workflows" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 48-61, 2024.
[47] Pedda Muntala, P. S. R., & Karri, N. (2024). Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. International Journal of AI, BigData, Computational and Management Studies, 5(1), 114-126. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112
[48] Jangam, S. K. (2024). Research on Firewalls, Intrusion Detection Systems, and Monitoring Solutions Compatible with QUIC’s Encryption and Evolving Protocol Features . International Journal of AI, BigData, Computational and Management Studies, 5(2), 90-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P110
[49] Anasuri, S., Pappula, K. K., & Rusum, G. P. (2024). Sustainable Inventory Management Algorithms in SAP ERP Systems. International Journal of AI, BigData, Computational and Management Studies, 5(2), 117-127. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P112
[50] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2024). Adaptive Tuning and Load Balancing Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 5(1), 101-110. https://doi.org/10.63282/3050-922X.IJERET-V5I1P112
[51] Tekale, K. M., Rahul, N., & Enjam, G. reddy. (2024). EV Battery Liability & Product Recall Coverage: Insurance Solutions for the Rapidly Expanding Electric Vehicle Market. International Journal of AI, BigData, Computational and Management Studies, 5(2), 151-160. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115
[52] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
[53] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106
[54] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
[55] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
[56] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
[57] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108
[58] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
[59] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
[60] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
[61] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.IJERET-V3I1P110
[62] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109
[63] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
[64] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur. International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.IJERET-V3I2P111
[65] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113
[66] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
[67] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
[68] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
[69] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109
[70] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110
[71] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
[72] Tekale, K. M., & Rahul, N. (2023). Blockchain and Smart Contracts in Claims Settlement. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 121-130. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P112
[73] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112
[74] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-Augmented Generation (RAG). International Journal of AI, BigData, Computational and Management Studies, 5(4), 124-136. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113
[75] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112
[76] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110
[77] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116.
[78] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107
[79] Anasuri, S., & Rusum, G. P. (2024). Software Supply Chain Security: Policy, Tooling, and Real-World Incidents. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 79-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108
[80] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115
[81] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113
