A Hybrid Metaheuristic Model for Multi-Objective Optimization in Distributed Computing Networks

Authors

  • M. Riyaz Mohammed Department of Computer Science & IT, Jamal Mohamed College (Autonomous), Tiruchirapalli, Tamil Nadu, India. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V1I1P102

Keywords:

Hybrid Metaheuristics, Multi-Objective Optimization, Distributed Computing Networks, Edgefogcloud Orchestration, Pareto Dominance, Adaptive Operator Selection, Surrogate Modeling, Differential Evolution, Ant Colony Local Search, Latency Throughput Energy Trade-Offs, Reliability And Sla Constraints, Hypervolume And Diversity Metrics

Abstract

This paper proposes a hybrid metaheuristic framework to jointly optimize latency, throughput, energy consumption, and reliability in distributed computing networks spanning edgefogcloud tiers. The model integrates a decomposition-based global search with adaptive multi-objective evolutionary operators and a problem-aware local intensification stage. Specifically, a population is evolved using a Pareto-dominance engine with adaptive operator selection (crossover/mutation portfolios inspired by NSGA-II and differential evolution), while an ant-colony/gradient-free local search refines elite solutions near congestion-prone regions of the network. To reduce evaluation cost under dynamic workloads, we incorporate surrogate fitness modeling via incremental regression on sampled flows and a feasibility repair mechanism that respects resource, SLA, and security constraints. A restart-and-memory strategy preserves diversity when fronts stagnate and accelerates convergence after topology or demand shifts. Extensive simulations on heterogeneous topologies with time-varying traffic demonstrate superior convergence speed, improved hypervolume, and better spread of Pareto fronts compared to canonical MOEAs and single-method hybrids. The approach consistently yields lower end-to-end latency and energy budgets at comparable reliability particularly in mixed CPU/GPU clusters and bandwidth-constrained edge segments. Ablation studies confirm the contribution of (i) adaptive operator selection, (ii) surrogate-guided evaluations, and (iii) local intensification. The proposed framework offers a practical pathway for online, policy-driven orchestration in large-scale distributed systems, enabling operators to trade off QoS and cost under uncertainty

References

[1] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TEC. https://sci2s.ugr.es/sites/default/files/files/Teaching/OtherPostGraduateCourses/Metaheuristicas/Deb_NSGAII.pdf sci2s.ugr.es

[2] Zhang, Q., Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE TEC. https://www.researchgate.net/publication/3418989_MOEAD_A_Multiobjective_Evolutionary_Algorithm_Based_on_Decomposition ResearchGate

[3] Zitzler, E., Laumanns, M., Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evolutionary Algorithm. ETH report. https://sop.tik.ee.ethz.ch/publicationListFiles/zlt2001a.pdf sop.tik.ee.ethz.ch

[4] Zitzler, E., Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search (IBEA). EMO. https://link.springer.com/chapter/10.1007/978-3-540-30217-9_84 SpringerLink

[5] Beume, N., Naujoks, B., Emmerich, M. (2007). SMS-EMOA. EJOR. https://www.sciencedirect.com/science/article/abs/pii/S0377221706005443 ScienceDirect

[6] While, L., Hingston, P., Barone, L., Huband, S. (2006). A faster algorithm for calculating hypervolume. https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=3022&context=ecuworks ro.ecu.edu.au

[7] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V. (2003). Performance assessment of multiobjective optimizers. IEEE TEC. https://sop.tik.ee.ethz.ch/publicationListFiles/ztlf2003a.pdf sop.tik.ee.ethz.ch

[8] Auger, A., Bader, J., Brockhoff, D., Zitzler, E. (2009). Theory of the hypervolume indicator: optimal μ-distributions. FOGA. https://www.cmap.polytechnique.fr/~dimo.brockhoff/publicationListFiles/abbz2009a.pdf cmap.polytechnique.fr

[9] Okabe, T., Jin, Y., Sendhoff, B. (2003). A critical survey of performance indices for multi-objective optimisation. CEC. https://www.soft-computing.de/Final_CEC2003_Okabe_1.pdf soft-computing.de

[10] Jin, Y. (2011). Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm & Evol. Comput. https://www.soft-computing.de/SECPublished.pdf soft-computing.de

[11] Fialho, Á., Schoenauer, M., Sebag, M. (2010). Toward comparison-based adaptive operator selection. INRIA/MSR report. https://scispace.com/pdf/toward-comparison-based-adaptive-operator-selection-4q8kf9td0b.pdf SciSpace

[12] Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., Lardeux, F., Sebag, M. (2011). Adaptive operator selection and management in EAs. In Autonomous Search. https://link.springer.com/chapter/10.1007/978-3-642-21434-9_7 SpringerLink

[13] Dorigo, M., Gambardella, L.M. (1997). Ant Colony System. IEEE TEC. https://faculty.csu.edu.cn/_resources/group1/M00/00/64/wKiylmHsBXyARBY7AAUIrZ-tJPM870.pdf Central South University Faculty Site

[14] Storn, R., Price, K. (1997). Differential Evolution. J. Global Optimization. https://link.springer.com/article/10.1023/A%3A1008202821328 SpringerLink

[15] Kennedy, J., Eberhart, R. (1995). Particle Swarm Optimization. Proc. IEEE NN. https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf Tufts Computer Science

[16] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. Science. https://www.science.org/doi/10.1126/science.220.4598.671 Science

[17] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge computing: vision and challenges. IEEE IoT J. https://cse.buffalo.edu/faculty/tkosar/cse710_spring20/shi-iot16.pdf cse.buffalo.edu

[18] Bonomi, F., Milito, R., Natarajan, P., Zhu, J. (2012). Fog computing and its role in the IoT. SIGCOMM MCC. https://conferences.sigcomm.org/sigcomm/2012/paper/mcc/p13.pdf SIGCOMM Conferences

[19] Kreutz, D., Ramos, F., Verissimo, P., et al. (2015). Software-Defined Networking: A comprehensive survey. Proc. IEEE. https://www.cs.utsa.edu/~korkmaz/teaching/ds-resources/sharvari-papers/survey-2015-Kreutz-sdn-comp-survey.pdf cs.utsa.edu

[20] Mach, P., Becvar, Z. (2017). Mobile edge computing: a survey on architecture and computation offloading. IEEE Comms Surveys & Tutorials. https://arxiv.org/abs/1702.05309 arXiv

[21] Bader, J., Zitzler, E. (2011). HypE: fast hypervolume-based many-objective optimization. TIK Report/ECJ version. https://faculty.csu.edu.cn/_resources/group1/M00/00/65/wKiylmHsCkCAVh4CAAoCxBHP04Y054.pdf Central South University Faculty Site

[22] Bringmann, K., Friedrich, T. (2010). An efficient algorithm for computing hypervolume contributions. Evolutionary Computation. https://people.mpi-inf.mpg.de/~kbringma/paper/J2010ECJ.pdf

Downloads

Published

2019-01-11

Issue

Section

Articles

How to Cite

[1]
M. R. Mohammed, “A Hybrid Metaheuristic Model for Multi-Objective Optimization in Distributed Computing Networks”, AIJCST, vol. 1, no. 1, pp. 12–22, Jan. 2019, doi: 10.63282/3117-5481/AIJCST-V1I1P102.

Similar Articles

11-20 of 95

You may also start an advanced similarity search for this article.