Al-Native 6G Network Management

Authors

  • Venu Madhav Nadella Cyma Systems Inc. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V6I1P103

Keywords:

AI-native network management, 6G wireless networks, Network automation, Machine learning in networks, Multi-agent reinforcement learning, Network digital twins, Intent-based orchestration, Semantic communication, Self-optimizing networks

Abstract

The evolution toward sixth-generation (6G) wireless systems demands a shift from traditionally engineered networks to AI-native network management, where intelligence is embedded across the entire architectural stack. As 6G targets extreme performance metrics sub-millisecond latency, terabit-level throughput, integrated sensing, and massive device density, legacy management approaches become insufficient (Dang et al., 2020; Zhang et al., 2021). Recent studies argue that embedding machine learning, distributed intelligence, and real-time automation into network control is essential for managing future complexity and enabling autonomous operation (Saad et al., 2020; Chen et al., 2022). AI-native management integrates technologies such as multi-agent reinforcement learning, network digital twins, semantic communication, and intent-based orchestration to create self-optimizing, self-healing, and context-aware networks (Flórez et al., 2023; Mahmood et al., 2024). This paper examines the conceptual foundations, architectural principles, and enabling technologies for AI-native 6G network management. It further analyzes emerging challenges—including data sparsity, model explainability, cross-domain trust, and scalability and outlines open research directions critical for achieving fully autonomous, resilient, and adaptive 6G networks. The findings suggest that AI-native design is not an enhancement but a fundamental requirement for realizing the operational ambitions of next-generation communication systems

References

[1] Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys & Tutorials, 20(3), 2429–2453.

[2] Bennis, M., Debbah, M., & Poor, H. V. (2018). Ultrareliable and low-latency wireless communication: Tail, risk, and scale. Proceedings of the IEEE, 106(10), 1834–1853.

[3] Chen, M., Saad, W., Yin, C., Debbah, M., & Hjelm, D. (2022). A joint learning and communications framework for federated learning over wireless networks. IEEE Transactions on Wireless Communications, 21(1), 269–284.

[4] Dang, S., Amin, O., Shihada, B., & Alouini, M.-S. (2020). What should 6G be? Nature Electronics, 3(1), 20–29.

[5] ETSI. (2022). Zero-touch network and service management (ZSM): End-to-end architecture (ETSI GS ZSM 002).

European Telecommunications Standards Institute.

[6] Flórez, N., Sánchez, A., & Garcia, P. (2023). Network digital twins for next-generation wireless systems: Concepts, architecture, and challenges. IEEE Communications Magazine, 61(10), 72–78.

[7] Gharaibeh, A., Qin, Z., McCann, J., & Imran, M. A. (2023). AI-driven cell-free massive MIMO for beyond 5G and 6G networks. IEEE Transactions on Communications, 71(9), 5382–5396.

[8] ITU-T. (2023). IMT-2030 Framework for 6G Mobile Networks. International Telecommunication Union.

[9] Hui, L., Wang, M., Zhang, L., Lu, L., & Cui, Y. (2022). Digital Twin for Networking: A data-driven performance modeling perspective. arXiv. https://doi.org/10.48550/arXiv.2206.00310

[10] O-RAN Alliance. (2023). AI/ML workflow and architecture (O-RAN.WG2.AIML-ARCH). O-RAN Alliance Standard.

[11] Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.

[12] Shi, H., Tong, L., & Zhang, J. (2023). Semantic communication: Overview, open issues, and future research directions. IEEE Wireless Communications, 30(1), 54–61.

[13] Sun, Y., Peng, M., & Mao, S. (2020). A survey on federated learning systems: Vision, hype, and reality for data privacy and protection. IEEE Communications Surveys & Tutorials, 23(2), 1342–1371.

[14] Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, H., & Leung, V. (2019). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

[15] Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., Karagiannidis, G. K., & Fan, P. (2021). 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 16(3), 28–41.

[16] Guo, W., Saad, W., & Poor, H. V. (2021). Distributed learning for ultra-reliable low-latency communications in 6G networks. IEEE Journal on Selected Areas in Communications, 39(7), 2124–2140.

[17] Jiang, W., Han, B., Habibi, M. A., & Schotten, H. D. (2021). The road towards 6G: A comprehensive survey. IEEE Open Journal of the Communications Society, 2, 334–366.

[18] Elbamby, M. S., Bennis, M., Saad, W., Debbah, M., & Latva-aho, M. (2019). Harnessing ultra-dense networks for 6G: From cell-free massive MIMO to intelligent reflecting surfaces. IEEE Communications Magazine, 57(11), 24–30.

[19] Rezazadeh, A., Gupta, R., & Jorswieck, E. A. (2022). Multi-agent reinforcement learning for RAN control in beyond 5G networks. IEEE Access, 10, 10355–10370.

[20] Latva-aho, M., & Leppänen, K. (2019). Key drivers and research challenges for 6G ubiquitous wireless intelligence (6G Flagship White Paper).

University of Oulu.

[21] Tong, W., & Zhang, J. (2021). The 6G vision and IMT-2030 standardization. China Communications, 18(12), 1–13.

[22] Strinati, E. C., Barbarossa, S., González-Jiménez, D., Ktenas, D., & Lemic, F. (2021). 6G networks: Beyond Shannon toward semantic and goal-oriented communications. Computer Networks, 190, 107930.

[23] Tarighat, S., Chen, M., & Saad, W. (2023). Semantic-aware resource allocation for 6G networks. IEEE Transactions on Wireless Communications, 22(5), 3334–3347.

[24] Saha, R., Gupta, G., & Guizani, M. (2023). AI-enabled threat detection and mitigation for next-generation wireless networks. IEEE Internet of Things Journal, 10(3), 2148–2162.

[25] Hu, S., Rusek, F., & Edfors, O. (2018). Beyond massive MIMO: The role of intelligent surfaces. IEEE Transactions on Wireless Communications, 17(4), 2505–2521.

[26] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. Available at SSRN 5609630.

[27] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[28] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[29] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.

[30] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[31] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

[32] Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.

[33] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. (2022). Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies, 1(2), 10-56472.

[34] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[35] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).

[36] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. Available at SSRN 5538121.

[37] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153-164.

[38] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.

[39] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. Available at SSRN 5515262.

[40] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS. WEAKNESSES, AND POTENTIAL APPLICATIONS.

[41] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340

[42] Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.

[43] Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712

[44] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[45] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[46] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[47] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[48] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[49] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[50] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[51] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[52] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[53] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, V., Enokkaren, S. J., & Attipalli, A. (2021). Systematic Review of Artificial Intelligence Techniques for Enhancing Financial Reporting and Regulatory Compliance. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 73-80.

[54] Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

[55] Namburi, V. D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Rajendran, D. (2023). Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 118-128.

[56] Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

[57] Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning.

[58] Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

[59] Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

[60] Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

[61] Rajendran, D., Maniar, V., Tamilmani, V., Namburi, V. D., Singh, A. A. S., & Kothamaram, R. R. (2023). CNN-LSTM Hybrid Architecture for Accurate Network Intrusion Detection for Cybersecurity. Journal Of Engineering And Computer Sciences, 2(11), 1-13.

[62] Singh, A. A. S. S., Mania, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D. N., & Tamilmani, V. (2023). Exploration of Java-Based Big Data Frameworks: Architecture, Challenges, and Opportunities. Journal of Artificial Intelligence & Cloud Computing, 2(4), 1-8.

[63] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., Singh, A. A., & Maniar, V. (2023). Exploring the Influence of ERP-Supported Business Intelligence on Customer Relationship Management Strategies. International Journal of Technology, Management and Humanities, 9(04), 179-191.

[64] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2023). Forecasting Stock Price Movements With Deep Learning Models for time Series Data Analysis. Journal of Artificial Intelligence & Cloud Computing, 2(4), 1-9.

[65] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey of Blockchain-Enabled Supply Chain Processes in Small and Medium Enterprises for Transparency and Efficiency. International Journal of Humanities and Information Technology, 5(04), 84-95.

[66] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2023). Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 112-123.

[67] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Humanities and Information Technology, 5(02), 53-65.

Downloads

Published

2024-01-09

Issue

Section

Articles

How to Cite

[1]
V. M. Nadella, “Al-Native 6G Network Management”, AIJCST, vol. 6, no. 1, pp. 23–37, Jan. 2024, doi: 10.63282/3117-5481/AIJCST-V6I1P103.

Similar Articles

1-10 of 109

You may also start an advanced similarity search for this article.