Sector-Specific Digital Adoption in Retail, Manufacturing, and Service SMEs

Authors

  • Godwin Olaoye Independent researcher, Ladoke Akintola University of technology Ogbomoso. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V8I1P103

Keywords:

Digital Adoption, Small and Medium-Sized Enterprises (Smes), Sector-Specific Analysis, Retail Smes, Manufacturing Smes, Service Smes, Digital Transformation, Operational Efficiency, Customer Engagement, Business Performance, Technology Adoption, Digital Challenges

Abstract

This study examines sector-specific patterns of digital adoption among small and medium-sized enterprises (SMEs) in the retail, manufacturing, and service sectors. The purpose of the study is to analyze how digital technologies are adopted differently across sectors and to assess their impacts on operational efficiency, customer engagement, and business performance. A qualitative and descriptive methodology was employed, drawing on existing literature, industry reports, and selected case examples to compare digital tools, adoption drivers, and challenges across the three sectors. The findings reveal that retail and service SMEs demonstrate relatively high levels of digital adoption, driven by the need for customer interaction, market expansion, and service efficiency, while manufacturing SMEs adopt digital technologies more gradually due to higher costs, technical complexity, and infrastructure constraints. Across all sectors, digital adoption contributes positively to productivity, competitiveness, and scalability, though barriers such as limited digital skills, cybersecurity concerns, and financial constraints persist. The study concludes that digital transformation in SMEs is highly sector-dependent, and targeted policies, capacity-building initiatives, and sector-specific digital strategies are essential to maximize the benefits of digital adoption.

References

[1] Waditwar, P. (2025) Leading through the Synthetic Media Era: Platform Governance to Curb AI-Generated Fake News, Protect the Public, and Preserve Trust. Open Journal of Leadership, 14, 403-418. doi: 10.4236/ojl.2025.143020.

[2] Chen, J., & Zhang, Y. (2021). Digital transformation of SMEs: A systematic literature review. Journal of Small Business Management, 59(4), 1–29.

[3] European Commission. (2020). SME strategy for a sustainable and digital Europe. Publications Office of the European Union.

[4] Kraus, S., Palmer, C., Kailer, N., Kallinger, F. L., & Spitzer, J. (2019). Digital transformation in business and management research: An overview of the current status quo. International Journal of Information Management, 45, 273–286.

[5] OECD. (2019). SMEs in the digital age: Opportunities and challenges. OECD Publishing.

[6] Waditwar, P. (2025) Smart Procurement in the Sports Industry: A Strategic Approach for Efficiency and Performance Enhancement. Open Journal of Business and Management, 13, 1743-1761. doi: 10.4236/ojbm.2025.133090

[7] Scuotto, V., Del Giudice, M., Garcia-Perez, A., & Orlando, B. (2017). The effect of social networking sites and absorptive capacity on SMEs’ innovation performance. Journal of Technology Transfer, 42(2), 409–424.

[8] Vial, G. (2019). Understanding digital transformation: A review and a research agenda. Journal of Strategic Information Systems, 28(2), 118–144.

[9] Autio, E., Nambisan, S., Thomas, L. D. W., & Wright, M. (2018). Digital affordances, spatial affordances, and the genesis of entrepreneurial ecosystems. Strategic Entrepreneurship Journal, 12(1), 72–95.

[10] Bayo-Moriones, A., Billón, M., & Lera-López, F. (2013). Perceived performance effects of ICT in manufacturing SMEs. Industrial Management & Data Systems, 113(1), 117–135.

[11] Prajkta Waditwar. Overcoming the AI Data Eclipse: Obstacles to the Full Adoption of Artificial Intelligence in the Procurement Technology Sector. World Journal of Advanced Research and Reviews, 2025, 27(03), 1583-1590. Article DOI: https://doi.org/10.30574/wjarr.2025.27.3.3296.

[12] Hervé, A., Schmitt, C., & Baldegger, U. (2020). Digitalization, entrepreneurial orientation, and performance of small firms. Journal of Small Business Management, 58(3), 1–29.

[13] Li, L., Su, F., Zhang, W., & Mao, J. Y. (2018). Digital transformation by SME entrepreneurs: A capability perspective. Information Systems Journal, 28(6), 1129–1157.

[14] Waditwar, P. (2025) Transforming Government Procurement through Electronic Bidding—A Case Study on the City of Somerville’s Implementation of BidExpress Infotech. Open Journal of Leadership, 14, 165-175. doi: 10.4236/ojl.2025.141007

[15] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[16] Singh, A. A. S., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Predictive Modeling for Classification of SMS Spam Using NLP and ML Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 60-69.

[17] Maniar, V., Tamilmani, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., & Singh, A. A. S. (2021). Review of Streaming ETL Pipelines for Data Warehousing: Tools, Techniques, and Best Practices. International Journal of AI, BigData, Computational and Management Studies, 2(3), 74-81.

[18] Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., Maniar, V., & Kothamaram, R. R. (2021). Anomaly Identification in IoT-Networks Using Artificial Intelligence-Based Data-Driven Techniques in Cloud Environmen. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 83-91.

[19] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Singh, A. A. S., Tamilmani, V., & Maniar, V. (2021). A Survey of Adoption Challenges and Barriers in Implementing Digital Payroll Management Systems in Across Organizations. International Journal of Emerging Research in Engineering and Technology, 2(2), 64-72.

[20] Singh, A. A., Tamilmani, V., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2021). Hybrid AI Models Combining Machine-Deep Learning for Botnet Identification. International Journal of Humanities and Information Technology, (Special 1), 30-45.

[21] Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2021). A Review of AI and Machine Learning Solutions for Fault Detection and Self-Healing in Cloud Services. International Journal of AI, BigData, Computational and Management Studies, 2(3), 53-63.

[22] Enokkaren, S. J., Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., & Attipalli, A. (2021). Enhancing Cloud Infrastructure Security Through AI-Powered Big Data Anomaly Detection. International Journal of Emerging Research in Engineering and Technology, 2(2), 43-54.

[23] Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., & Bitkuri, V. (2021). A Survey of Artificial Intelligence Methods in Liquidity Risk Management: Challenges and Future Directions. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 35-42.

[24] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2021). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Computer Technology and Electronics Communication, 4(1), 3219-3229.

[25] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. (2022). Blockchain Technology as a Tool for Cybersecurity: Strengths, Weaknesses, and Potential Applications. Unpublished manuscript.

[26] Rajendran, D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Namburi, V. D. (2022). Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects for Quality Assurance. Universal Library of Engineering Technology, (Issue).

[27] Namburi, V. D., Rajendran, D., Singh, A. A., Maniar, V., Tamilmani, V., & Kothamaram, R. R. (2022). Machine Learning Algorithms for Enhancing Predictive Analytics in ERP-Enabled Online Retail Platform. International Journal of Advance Industrial Engineering, 10(04), 65-73.

[28] Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2022). Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. International Journal of AI, BigData, Computational and Management Studies, 3(3), 82-90.

[29] Tamilmani, V., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2022). Forecasting Financial Trends Using Time Series Based ML-DL Models for Enhanced Business Analytics. Available at SSRN 5837143.

[30] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[31] Attipalli, A., Mamidala, J. V., KURMA, J., Bitkuri, V., Kendyala, R., & Enokkaren, S. (2022). Towards the Efficient Management of Cloud Resource Allocation: A Framework Based on Machine Learning. Available at SSRN 5741265.

[32] Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., Kurma, J., & Mamidala, J. V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Universal Library of Engineering Technology, (Issue).

[33] Kurma, J., Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., & Kendyala, R. (2022). A Review of Security, Compliance, and Governance Challenges in Cloud-Native Middleware and Enterprise Systems. International Journal of Research and Applied Innovations, 5(1), 6434-6443.

[34] Attipalli, A., Enokkaren, S., KURMA, J., Mamidala, J. V., Kendyala, R., & BITKURI, V. (2022). A Deep-Review based on Predictive Machine Learning Models in Cloud Frameworks for the Performance Management. Available at SSRN 5741282.

[35] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2022). Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies. International Journal of AI, BigData, Computational and Management Studies, 3(4), 49-59.

[36] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[37] Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., & Nandiraju, S. K. K. (2022). Efficient machine learning approaches for intrusion identification of DDoS attacks in cloud networks. Available at SSRN 5515262.

[38] Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., & Bhumireddy, J. R. (2022). Leveraging big datasets for machine learning-based anomaly detection in cybersecurity network traffic. Available at SSRN 5538121.

[39] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.

[40] Namburi, V. D., Singh, A. A. S., Maniar, V., Tamilmani, V., Kothamaram, R. R., & Rajendran, D. (2023). Intelligent Network Traffic Identification Based on Advanced Machine Learning Approaches. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 118-128.

[41] Rajendran, D., Maniar, V., Tamilmani, V., Namburi, V. D., Singh, A. A. S., & Kothamaram, R. R. (2023). CNN-LSTM Hybrid Architecture for Accurate Network Intrusion Detection for Cybersecurity. Journal Of Engineering And Computer Sciences, 2(11), 1-13.

[42] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., Singh, A. A., & Maniar, V. (2023). Exploring the Influence of ERP-Supported Business Intelligence on Customer Relationship Management Strategies. International Journal of Technology, Management and Humanities, 9(04), 179-191.

[43] Singh, A. A. S. S., Mania, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D. N., & Tamilmani, V. (2023). Exploration of Java-Based Big Data Frameworks: Architecture, Challenges, and Opportunities.Journal of Artificial Intelligence & Cloud Computing,2(4), 1-8.

[44] Tamilmani, V., Namburi, V. D., Singh Singh, A. A., Maniar, V., Kothamaram, R. R., & Rajendran, D. (2023). Real-Time Identification of Phishing Websites Using Advanced Machine Learning Methods. Available at SSRN 5837142.

[45] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey of Blockchain-Enabled Supply Chain Processes in Small and Medium Enterprises for Transparency and Efficiency. International Journal of Humanities and Information Technology, 5(04), 84-95.

[46] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., & Attipalli, A. (2023). Efficient Resource Management and Scheduling in Cloud Computing: A Survey of Methods and Emerging Challenges. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 112-123.

[47] Mamidala, J. V., Attipalli, A., Enokkaren, S. J., Bitkuri, V., Kendyala, R., & Kurma, J. (2023). A Survey on Hybrid and Multi-Cloud Environments: Integration Strategies, Challenges, and Future Directions. International Journal of Humanities and Information Technology, 5(02), 53-65.

[48] Mamidala, J. V., Enokkaren, S. J., Attipalli, A., Bitkuri, V., Kendyala, R., & Kurma, J. Machine Learning Models Powered by Big Data for Health Insurance Expense Forecasting. International Research Journal of Economics and Management Studies IRJEMS, 2(1).

[49] Bhumireddy, J. R. (2023). A Hybrid Approach for Melanoma Classification using Ensemble Machine Learning Techniques with Deep Transfer Learning Article in Computer Methods and Programs in Biomedicine Update. Available at SSRN 5667650.

[50] From Fragmentation to Focus: The Benefits of Centralizing Procurement. (2023). International Journal of Research and Applied Innovations, 6(6), 9820-9833. https://doi.org/10.15662/IJRAI.2023.0606006

[51] Waditwar, P. (2025) Agentic AI in Contract Analytics Harnessing Machine Learning for Risk Assessment and Compliance in Government Procurement Contracts. Open Journal of Business and Management, 13, 3385-3395. doi: 10.4236/ojbm.2025.135179.

[52] Narra, B., Buddula, D. V. K. R., Patchipulusu, H., Vattikonda, N., Gupta, A., & Polu, A. R. (2024). The integration of artificial intelligence in software development: Trends, tools, and future prospects. Available at SSRN 5596472.

[53] Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Vattikonda, N. (2024). Leveraging deep learning models for intrusion detection systems for secure networks. Journal of Computer Science and Technology Studies, 6(2), 199-208.

[54] Achuthananda, R. P., Bhumeka, N., Dheeraj Varun Kumar, R. B., Hari Hara, S. P., & Navya, V. (2024). Evaluating machine learning approaches for personalized movie recommendations: A comprehensive analysis. J Contemp Edu Theo Artific Intel: JCETAI-115.

[55] Polu, A. R., Narra, B., Buddula, D. V. K. R., Hara, H., Patchipulusu, S., Vattikonda, N., & Gupta, A. K. Analyzing The Role of Analytics in Insurance Risk Management: A Systematic Review of Process Improvement and Business Agility.

[56] Tamilmani, V., Maniar, V., Singh, A. A., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2024). A Review of Cyber Threat Detection in Software-Defined and Virtualized Networking Infrastructures. International Journal of Technology, Management and Humanities, 10(04), 136-146.

[57] Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., Maniar, V., & Singh, A. A. S. Predictive Analytics for Customer Retention in Telecommunications Using ML Techniques.

[58] Singh, A. A. S., Kothamaram, R. R., Rajendran, D., Deepak, V., Namburi, V. T., & Maniar, V. A Review on Model-Driven Development with a Focus on Microsoft PowerApps.

[59] Bitkuri, V., Kendyala, R., Kurma, J., Mamidala, J. V., Attipalli, A., & Enokkaren, S. J. (2024). A Survey on Blockchain-Enabled ERP Systems for Secure Supply Chain Processes and Cloud Integration. International Journal of Technology, Management and Humanities, 10(04), 126-135.

[60] Waditwar, P. (2024) AI for Bathsheba Syndrome: Ethical Implications and Preventative Strategies. Open Journal of Leadership, 13, 321-341. doi: 10.4236/ojl.2024.133020

[61] Mamidala, J. V., Bitkuri, V., Attipalli, A., Kendyala, R., Kurma, J., & Enokkaren, S. J. (2024). Machine Learning Approaches to Salary Prediction in Human Resource Payroll Systems. Journal of Computer Science and Technology Studies, 6(5), 341-349.

[62] Prajkta Waditwar. Reimagining procurement payments: From transactional bottlenecks to strategic value creation. World Journal of Advanced Research and Reviews, 2025, 28(01), 588-598. Article DOI: https://doi.org/10.30574/wjarr.2025.28.1.3480.

[63] Attipalli, A., Kendyala, R., Kurma, J., Mamidala, J. V., Bitkuri, V., & Enokkaren, S. J. Privacy Preservation in the Cloud: A Comprehensive Review of Encryption and Anonymization Methods. International Journal of Multidisciplinary on Science and Management IJMSM, 1(1).

[64] Enokkaren, S. J., Kendyala, R., Kurma, J., Mamidala, J. V., Bitkuri, V., & Attipalli, A. Artificial Intelligence (AI)-Based Advance Models for Proactive Payroll Fraud Detection and Prevention.

[65] Gangineni, V. N., Tyagadurgam, M. S. V., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2024). AI-Powered Cybersecurity Risk Scoring for Financial Institutions Using Machine Learning Techniques (Approved by ICITET 2024). Journal of Artificial Intelligence & Cloud Computing.

[66] Waditwar, P. (2024) The Intersection of Strategic Sourcing and Artificial Intelligence: A Paradigm Shift for Modern Organizations. Open Journal of Business and Management, 12, 4073-4085. doi: 10.4236/ojbm.2024.126204.

[67] Rajendran, D., Namburi, V. D., Tamilmani, V., Singh, A. A. S., Maniar, V., & Kothamaram, R. R. (2026). Middleware Architectures for Hybrid and Multi-cloud Environments: A Survey of Scalability and Security Approaches. Asian Journal of Research in Computer Science, 19(1), 106-120.

[68] Waditwar, P. (2026) De-Risking Returns: How AI Can Reinvent Big Tech’s China-Tied Reverse Supply Chains. Open Journal of Business and Management, 14, 104-124. doi: 10.4236/ojbm.2026.141007

[69] Maniar, V., Kothamaram, R. R., Rajendran, D., Namburi, V. D., Tamilmani, V., & Singh, A. A. S. (2025). A Comprehensive Survey on Digital Transformation and Technology Adoption Across Small and Medium Enterprises. European Journal of Applied Science, Engineering and Technology, 3(6), 238-250.

[70] Tamilmani, V., Maniar, V., Singh, A. A. S., Kothamaram, R. R., Rajendran, D., & Namburi, V. D. (2025). Automated Cloud Migration Pipelines: Trends, Tools, and Best Practices–A Survey. Journal of Computer Science and Technology Studies, 7(11), 121-134.

[71] Attipalli, A., Kendyala, R., Kurma, J., Mamidala, J. V., Bitkuri, V., & Enokkaren, S. J. (2025). Survey on Evolution of Java Web Technologies and Best Practices: from Servlets to Microservices. Asian Journal of Research in Computer Science, 18(11), 172-187.

[72] Mamidala, J. V., Bitkuri, V., Enokkaren, S. J., Attipalli, A., Kendyala, R., & Kurma, J. (2025). Explainable Machine Learning Models for Malware Identification in Modern Computing Systems. European Journal of Applied Science, Engineering and Technology, 3(5), 153-170.

[73] Waditwar, P. (2025) AI-Driven Smart Negotiation Assistant for Procurement—An Intelligent Chatbot for Contract Negotiation Based on Market Data and AI Algorithms. Journal of Data Analysis and Information Processing, 13, 140-155. doi: 10.4236/jdaip.2025.132009.

[74] Kendyala, R., Kurma, J., Mamidala, J. V., Enokkaren, S. J., Attipalli, A., & Bitkuri, V. (2025). Framework based on Machine Learning for Lung Cancer Prognosis with Big Data-Driven. European Journal of Technology, 9(1), 68-85.

[75] Gangineni, V. N., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Pabbineedi, S. (2025). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. Available at SSRN 5478047.

[76] Kulkarni, P., Siddharth, T., Pillai, S., Pathak, P., Gangineni, V. N., & Yadav, V. (2025, June). Cybersecurity Threats and Vulnerabilities-A Growing Challenge in Connected Vehicles. In International Conference on Data Analytics & Management (pp. 466-476). Cham: Springer Nature Switzerland.

[77] Vanaparthi, N. R. (2025). Intelligent finance: How AI is reshaping the future of financial services. International Journal of Computer Engineering and Technology, 16(1), 126–137. https://doi.org/10.34218/IJCET_16_01_012

[78] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2025). Preventing Phishing Attacks Using Advanced Deep Learning Techniques for Cyber Threat Mitigation.

[79] Penmetsa, M., Bhumireddy, J. R., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Chalasani, R. (2025). Adversarial Machine Learning in Cybersecurity: A Review on Defending Against AI-Driven Attacks. Available at SSRN 5515383.

[80] Hemish Prakashchandra Kapadia. (2025). Scalable Web Architectures for Banking: Cloud vs. On-Premises. Journal of Emerging Technologies and Innovative Research (JETIR), 12(3), j534-j539. https://www.jetir.org/papers/JETIR2503966.pd

Downloads

Published

2026-01-09

Issue

Section

Articles

How to Cite

[1]
G. Olaoye, “Sector-Specific Digital Adoption in Retail, Manufacturing, and Service SMEs”, AIJCST, vol. 8, no. 1, pp. 21–28, Jan. 2026, doi: 10.63282/3117-5481/AIJCST-V8I1P103.

Similar Articles

61-70 of 125

You may also start an advanced similarity search for this article.