AI-Powered Customer 360 in P&C Insurance: Merging CRM, Guidewire, and Behavioral Analytics

Authors

  • Gowtham Reddy Enjam Independent Researcher, USA. Author
  • Komal Manohar Tekale Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I1P103

Keywords:

AI, Customer 360, P&C Insurance, Crm, Guidewire, Behavioral Analytics, Predictive Modeling, Customer Retention

Abstract

The property and casualty (P&C) insurance is faced with the challenge of failing to handle the growing customer needs, regulatory and competitive businesses. The demand to possess a consistent customer perspective that presents CRM, Guideware policy systems and behavioural analysis have never been greater. The proposed Customer 360 AI-based solution targeted at P&C insurers is suggested in the current paper. The paper cites the design, operational style, how AI was used in merging the different databases in such a way that it could provide meaningful actionable intelligence. It is also in the paper that additional discussion is made regarding principles of behavioral analytics integration which can be useful in enhancing customer experience, risk assessment and management of claims. The paper shows the effectiveness of the implementation of the AI-based Customer 360 model in cross-selling/up-selling strategies, customer retention, and effective business process, basing on the case studies and simulation of the real world. Conclusions demonstrate that the customer satisfaction degree, the policy conversion rates, and predictive ability of claim behavior also significantly increase when insurers approach the demanding strategy of integration. Such aspects as technical conditions, data security issues, and efficient implementation plans are also indicated in the study

References

[1] Goyal, R. Customer Segmentation and Personalization in Insurance: A Business Analysis Approach. IJLRP-International Journal of Leading Research Publication, 5(8).

[2] GhorbanTanhaei, H., Boozary, P., Sheykhan, S., Rabiee, M., Rahmani, F., & Hosseini, I. (2024). Predictive analytics in customer behavior: Anticipating trends and preferences. Results in Control and Optimization, 17, 100462.

[3] Chakladar, R. D. (2023). The Transformation of P&C Underwriting Through Data and Analytics. North American Journal of Engineering Research, 4(3).

[4] Reddy, A. S. (2024). Beyond the Claims: Emerging AI Models and Predictive Analytics in Property & Casualty Insurance Risk Assessment.

[5] Guidewire to Bring the Power of Salesforce CRM to P&C Insurance, guidewire, 2017. online. https://www.guidewire.com/about/press-center/press-releases/20170927/guidewire-bring-power-salesforce-crm-pc-insurance

[6] The role of AI in P&C insurance claims and policy optimization, online. https://www.ust.com/en/insights/the-role-of-ai-in-p-and-c-insurance-claims-and-policy-optimization

[7] Karppanen, V. (2024). Leveraging ai-enabled personalization in customer relationship management.

[8] Almubarak Ali, M. A., Elmubarak, Y. A., & Salim Babiker, M. A. (2024). The Role of Artificial Intelligence in Risk Management and Underwriting Optimization in the Insurance Industry. Pakistan Journal of Life & Social Sciences, 22(2).

[9] Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using artificial intelligence to create value in insurance. International Journal of Bank Marketing, 36(6), 1145-1168.

[10] Reddy, A. S. (2023). Multi-Cloud Data Resilience: Implementing Cross-Platform Data Strategies with Snowflake for P&C Insurance Operations.

[11] Alia Shkurdoda, Insurance data 360: Sync your business data ecosystem, eliminate silos and see ultimate efficiency at scale, online. https://www.griddynamics.com/blog/insurance-data-360

[12] Roppestad, S. B. (2024). Artificial Intelligence in Insurance-A Case Study of Business Operations and a Theoretical Model of Information Balance (Master's thesis, Oslo Metropolitan University).

[13] Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., ... & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line, 33(2), 183-200.

[14] Pan, S. L., Tan, C. W., & Lim, E. T. (2006). Customer relationship management (CRM) in e-government: a relational perspective. Decision support systems, 42(1), 237-250.

[15] Payne, A., & Frow, P. (2016). Customer relationship management: Strategy and implementation. In The marketing book (pp. 439-466). Routledge.

[16] Boadu, K., & Achiaa, A. (2019). Customer relationship management and customer retention. Customer Relationship Management and Customer Retention (October 20, 2019).

[17] Future Trends in Insurance CRM: AI, Automation, and Predictive Analytics, decerto, 2024. online. https://www.decerto.com/post/future-trends-in-insurance-crm-ai-automation-and-predictive-analytics

[18] Xu, X., & Zweifel, P. (2020). A framework for the evaluation of InsurTech. Risk Management and Insurance Review, 23(4), 305-329.

[19] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[20] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[21] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[22] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[23] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[24] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[25] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[26] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[27] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[28] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[29] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[30] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[31] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[32] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[33] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[34] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[35] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[36] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[37] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

[38] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[39] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[40] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). AI Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or Biased Algorithmic Decisions. International Journal of AI, BigData, Computational and Management Studies, 4(1), 137-146. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114

[41] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2023). AI-Driven Indexing Strategies. International Journal of AI, BigData, Computational and Management Studies, 4(2), 111-119. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112

[42] Rusum, G. P., & Pappula, K. K. (2024). Platform Engineering: Empowering Developers with Internal Developer Platforms (IDPs). International Journal of AI, BigData, Computational and Management Studies, 5(1), 89-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110

[43] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[44] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[45] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation. International Journal of AI, BigData, Computational and Management Studies, 5(2), 102-116. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111

[46] Jangam, S. K., & Karri, N. (2024). Hyper Automation, a Combination of AI, ML, and Robotic Process Automation (RPA), to Achieve End-to-End Automation in Enterprise Workflows. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 92-103. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P109

[47] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. International Journal of AI, BigData, Computational and Management Studies, 5(1), 102-113. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111

[48] Karri, N. (2024). Real-Time Performance Monitoring with AI. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 102-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111

[49] Tekale, K. M. (2024). AI Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative AI, Bias Detection, and Explainability in Insurance Decisioning. International Journal of AI, BigData, Computational and Management Studies, 5(1), 159-166. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116

[50] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[51] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[52] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[53] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[54] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[55] Karri, N., & Jangam, S. K. (2021). Security and Compliance Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 73-82. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P109

[56] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

[57] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[58] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

[59] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110

[60] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[61] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[62] Karri, N. (2022). Leveraging Machine Learning to Predict Future Storage and Compute Needs Based on Usage Trends. International Journal of AI, BigData, Computational and Management Studies, 3(2), 89-98. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P109

[63] Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation and Predictive Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research in Engineering and Technology, 3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

[64] Rusum, G. P., & Pappula, K. K. (2023). Low-Code and No-Code Evolution: Empowering Domain Experts with Declarative AI Interfaces. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 105-112. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112

[65] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

[66] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[67] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111

[68] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[69] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[70] Tekale, K. M., & Enjam, G. reddy. (2023). Advanced Telematics & Connected-Car Data. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 124-132. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114

[71] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115

[72] Guru Pramod Rusum, "Green ML: Designing Energy-Efficient Machine Learning Pipelines at Scale" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 49-61, 2024.

[73] Kiran Kumar Pappula, "Transformer-Based Classification of Financial Documents in Hybrid Workflows" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 48-61, 2024.

[74] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[75] Pedda Muntala, P. S. R., & Karri, N. (2024). Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. International Journal of AI, BigData, Computational and Management Studies, 5(1), 114-126. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112

[76] Sandeep Kumar Jangam, Partha Sarathi Reddy Pedda Muntala, "Comprehensive Defense-in-Depth Strategy for Enterprise Application Security" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[77] Anasuri, S., & Rusum, G. P. (2024). Software Supply Chain Security: Policy, Tooling, and Real-World Incidents. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 79-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108

[78] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

[79] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113

Downloads

Published

2025-01-08

Issue

Section

Articles

How to Cite

[1]
G. R. Enjam and K. M. Tekale, “AI-Powered Customer 360 in P&C Insurance: Merging CRM, Guidewire, and Behavioral Analytics”, AIJCST, vol. 7, no. 1, pp. 28–41, Jan. 2025, doi: 10.63282/3117-5481/AIJCST-V7I1P103.

Similar Articles

11-20 of 81

You may also start an advanced similarity search for this article.