Vulnerability Detection in Open Source Software Using Machine Learning

Authors

  • Sunil Anasuri Independent Researcher, USA. Author
  • Guru Pramod Rusum Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I1P107

Keywords:

Open Source Software, Vulnerability Detection, Machine Learning, Deep Learning, Code Analysis, Cybersecurity

Abstract

Open Source Software (OSS) has become the pillar of modern computing, acting as the backbone to a wide variety of applications serving web platforms, embedded systems, and more. Although OSS offers innovation, cost-effectiveness, and prompt deployment, it is also vulnerable to security attacks due to its open access and community creation. A long-established approach to determining the weakness of OSS has been based on manual reviews of the code, static analysis and bug reports provided by the community. Yet, these methods can be very time-consuming and error-prone, and are not suited to the size of current OSS projects. Recently, progress in Machine Learning (ML) has opened up new possibilities for the automated and intelligent detection of vulnerabilities. With the analysis of code semantics, dependencies, and patterns in large amounts of data, it is also possible to reliably predict and classify which components are vulnerable using ML models. The current paper discusses how ML methods can be applied with the purpose of identifying vulnerabilities in OSS. These can be listed as: (i) learning the limitations of the current manual and semi-automated vulnerability detection methods, (ii) investigating the ML method of analysing source code and making use of supervised learning, deep learning, and Natural Language Processing (NLP), and (iii) determining how effective ML can be employed in OSS projects in the real world. The procedure will boil down to gathering the dataset from off-the-shelf sources (public repositories, e.g., GitHub, CVE databases), preprocessing (embedding the code into a vector), training the ML classifiers, and evaluating the performance with different levels of precision, recall, and the F1-score. Interpretability-related problems are also explored by us so that the ML-based detection could be transparent and trustworthy. Our experiments show that ML models outperform static analysis tools, achieving higher accuracy, and are faster than traditional static analysis tools. Deep learning models make use of Abstract Syntax Trees (AST) and code2vec embedding that are more effective at detecting zero-day vulnerabilities than rules-based ones. The presentation discusses the problems of imbalanced datasets, adversarial attacks on machine learning models, and explainability in security-relevant areas. The conclusion points to the demand for hybrid solutions that use ML in combination with existing static data-driven analysis to identify vulnerable OSS. Lastly, we outline future research directions, including federated learning for remote OSS communities, explainable AI (XAI) to enhance transparency, and reinforcement learning to improve adaptability in detecting vulnerabilities

References

[1] Pistoia, M., Chandra, S., Fink, S. J., & Yahav, E. (2007). A survey of static analysis methods for identifying security vulnerabilities in software systems. IBM Systems Journal, 46(2), 265-288.

[2] Filus, K., Boryszko, P., Domańska, J., Siavvas, M., & Gelenbe, E. (2021). Efficient feature selection for static analysis vulnerability prediction. Sensors, 21(4), 1133.

[3] Harzevili, N. S., Belle, A. B., Wang, J., Wang, S., Ming, Z., & Nagappan, N. (2023). A survey on automated software vulnerability detection using machine learning and deep learning. arXiv preprint arXiv:2306.11673.

[4] Hulayyil, S. B., Li, S., & Xu, L. (2023). Machine-learning-based vulnerability detection and classification in Internet of Things device security. Electronics, 12(18), 3927.

[5] Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T., & Grunske, L. (2022). VUDENC: vulnerability detection with deep learning on a natural codebase for Python. Information and Software Technology, 144, 106809.

[6] Marjanov, T., Pashchenko, I., & Massacci, F. (2022). Machine learning for source code vulnerability detection: What works and what isn’t there yet. IEEE Security & Privacy, 20(5), 60-76.

[7] Nicolae, M. I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., ... & Edwards, B. (2018). Adversarial Robustness Toolbox v1. 0.0. arXiv preprint arXiv:1807.01069.

[8] Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., & Roli, F. (2015). Support Vector Machines under Adversarial Label Contamination. Neurocomputing, 160, 53-62.

[9] Apruzzese, G., Andreolini, M., Colajanni, M., & Marchetti, M. (2020). Hardening random forest cyber detectors against adversarial attacks. IEEE Transactions on Emerging Topics in Computational Intelligence, 4(4), 427-439.

[10] Marino, D. L., Wickramasinghe, C. S., & Manic, M. (2018, October). An Adversarial Approach for Explainable AI in Intrusion Detection Systems. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (pp. 3237-3243). IEEE.

[11] Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R., Rangamani, A., ... & Lazovich, T. (2018). Automated software vulnerability detection with machine learning. arXiv preprint arXiv:1803.04497.

[12] Chernis, B., & Verma, R. (2018, March). Machine Learning Methods for Software Vulnerability Detection. In Proceedings of the fourth ACM international workshop on security and privacy analytics (pp. 31-39).

[13] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., ... & McConley, M. (2018, December). Automated vulnerability detection in source code using deep representation learning. In 2018, the 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 757-762). IEEE.

[14] Sonnekalb, T. (2019, August). Machine-learning supported vulnerability detection in source code. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 1180-1183).

[15] Shiri Harzevili, N., Boaye Belle, A., Wang, J., Wang, S., Jiang, Z. M., & Nagappan, N. (2024). A systematic literature review on automated software vulnerability detection using machine learning. ACM Computing Surveys, 57(3), 1-36.

[16] Bilgin, Z., Ersoy, M. A., Soykan, E. U., Tomur, E., Çomak, P., & Karaçay, L. (2020). Vulnerability prediction from source code using machine learning. IEEE Access, 8, 150672-150684.

[17] Lin, G., Wen, S., Han, Q. L., Zhang, J., & Xiang, Y. (2020). Software vulnerability detection using deep neural networks: a survey. Proceedings of the IEEE, 108(10), 1825-1848.

[18] Aslan, Ö., Aktuğ, S. S., Ozkan-Okay, M., Yilmaz, A. A., & Akin, E. (2023). A comprehensive review of cybersecurity vulnerabilities, threats, attacks, and solutions. Electronics, 12(6), 1333.

[19] Wu, F., Wang, J., Liu, J., & Wang, W. (2017, December). Vulnerability detection with deep learning. In 2017, the 3rd IEEE International Conference on Computer and Communications (ICCC) (pp. 1298-1302). IEEE.

[20] Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., & Jin, H. (2019). A comparative study of a deep learning-based vulnerability detection system. IEEE Access, 7, 103184-103197.

[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[26] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[29] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[30] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[31] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[32] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[33] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[34] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[35] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[36] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[37] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[38] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[39] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[40] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[41] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[42] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[43] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[44] Tekale, K. M., & Enjam, G. reddy. (2023). Advanced Telematics & Connected-Car Data. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 124-132. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114

[45] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115

[46] Guru Pramod Rusum, "Green ML: Designing Energy-Efficient Machine Learning Pipelines at Scale" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 49-61, 2024.

[47] Gowtham Reddy Enjam, Sandeep Channapura Chandragowda, "Decentralized Insured Identity Verification in Cloud Platform using Blockchain-Backed Digital IDs and Biometric Fusion" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 75-86, 2024.

[48] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[49] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[50] Pedda Muntala, P. S. R., & Karri, N. (2024). Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. International Journal of AI, BigData, Computational and Management Studies, 5(1), 114-126. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112

[51] Sandeep Kumar Jangam, Partha Sarathi Reddy Pedda Muntala, "Comprehensive Defense-in-Depth Strategy for Enterprise Application Security" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[52] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2024). Adaptive Tuning and Load Balancing Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 5(1), 101-110. https://doi.org/10.63282/3050-922X.IJERET-V5I1P112

[53] Tekale, K. M., Rahul, N., & Enjam, G. reddy. (2024). EV Battery Liability & Product Recall Coverage: Insurance Solutions for the Rapidly Expanding Electric Vehicle Market. International Journal of AI, BigData, Computational and Management Studies, 5(2), 151-160. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115

[54] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[55] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[56] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[57] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[59] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[60] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[61] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

[62] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[63] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[64] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[65] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110

[66] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[67] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[68] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur. International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.IJERET-V3I2P111

[69] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[70] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111

[71] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[72] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[73] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[74] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[75] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[76] Tekale , K. M. (2023). AI-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[77] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

[78] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-Augmented Generation (RAG). International Journal of AI, BigData, Computational and Management Studies, 5(4), 124-136. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113

[79] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[80] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[81] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[82] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111

[83] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

[84] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

[85] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113.

Downloads

Published

2025-01-20

Issue

Section

Articles

How to Cite

[1]
S. Anasuri and G. P. Rusum, “Vulnerability Detection in Open Source Software Using Machine Learning”, AIJCST, vol. 7, no. 1, pp. 83–95, Jan. 2025, doi: 10.63282/3117-5481/AIJCST-V7I1P107.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 98

You may also start an advanced similarity search for this article.