Edge-Native Software: Designing Resilient Apps for Low-Latency, Distributed Environments

Authors

  • Guru Pramod Rusum Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I3P103

Keywords:

Edge-Native Software, Edge Computing, Microservices, Low Latency, Distributed Systems, Kubernetes

Abstract

The emergence of edge computing has also changed the way contemporary applications are designed, with the focus put on achieving high-resilience, low-latency software programs that are deployed on decentralized and resource-limited systems. Edge-native software is software purposely made to operate at the edge of a network, to allow processing of real-time data, lower bandwidth consumption, and greater fault resiliency. This paradigm is particularly critical to those areas, including autonomous systems, industrial automation, smart cities, and energy infrastructure, that need sub-second responsiveness and system trustworthiness. In this paper, an in-depth design framework of edge-native applications based on microservices architecture is described. Some of the main principles that we discuss are decentralization, data locality, stateless vs. stateful design, redundancy, fault domain isolation and so on. Reference architecture is proposed to support scalable deployments in the event of network partition, and self-healing and management qualities in processing consistent data across heterogeneous edge nodes. We consider powered-up technologies such as lightweight container orchestration (i.e., K3S, Docker), edge communication (i.e., MQTT, gRPC), and Chaos engineering. The performance of the architecture in the latency, fault, and resource stress situations is confirmed by experimental results on the Kubernetes-based edge testbed. The results show that edge-native solutions have the potential to surpass the cloud-based model in measures of latency, throughput, fault recovery, and energy efficiency. We also comment on representative use cases like cars on autopilot and predictive maintenance, and discover such issues as the complexity of orchestration, safety, and managing AI models at the edge

References

[1] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., ... & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330.

[2] Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., & Ahmed, A. (2019). Edge computing: A survey. Future Generation Computer Systems, 97, 219-235.

[3] Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., & Imran, M. (2018). The role of edge computing in the Internet of Things. IEEE Communications Magazine, 56(11), 110-115.

[4] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637-646.

[5] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2016, December). The evolution of distributed systems towards microservices architecture. In 2016, the 11th International Conference for Internet Technology and Secured Transactions (ICITST) (pp. 318-325). IEEE.

[6] What is the role of microservices in distributed database systems?, milvus, online. https://milvus.io/ai-quick-reference/what-is-the-role-of-microservices-in-distributed-database-systems

[7] Jhawar, R., & Piuri, V. (2017). Fault tolerance and resilience in cloud computing environments. In Computer and Information Security Handbook (pp. 155-173). Morgan Kaufmann.

[8] Strigini, L. (2012). Fault tolerance and resilience: meanings, measures and assessment. In Resilience assessment and evaluation of computing systems (pp. 3-24). Berlin, Heidelberg: Springer Berlin Heidelberg.

[9] Saini, K., & Raj, P. (2022). Edge platforms, frameworks and applications. In Advances in Computers (Vol. 127, pp. 237-258). Elsevier.

[10] Sonkoly, B., Haja, D., Németh, B., Szalay, M., Czentye, J., Szabó, R., ... & Toka, L. (2020). Scalable edge cloud platforms for IoT services. Journal of Network and Computer Applications, 170, 102785.

[11] Satyanarayanan, M., Klas, G., Silva, M., & Mangiante, S. (2019, July). The seminal role of edge-native applications. In 2019 IEEE International Conference on Edge Computing (EDGE) (pp. 33-40). IEEE.

[12] Do, N. H., Van Do, T., Tran, X. T., Farkas, L., & Rotter, C. (2017, March). A scalable routing mechanism for stateful microservices. In 2017, 20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (pp. 72-78). IEEE.

[13] Sasaki, H., Tanimoto, T., Inoue, K., & Nakamura, H. (2012, September). Scalability-based manycore partitioning. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques (pp. 107-116).

[14] Design Principles for Edge Native Applications, reactiveprinciples, online. https://www.reactiveprinciples.org/edge-native/index.html

[15] Lovén, L., Lähderanta, T., Ruha, L., Peltonen, E., Launonen, I., Sillanpää, M. J., ... & Pirttikangas, S. (2021). EDISON: An edge-native method and architecture for distributed interpolation. Sensors, 21(7), 2279.

[16] Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., & Parashar, M. (2010). Peer-to-peer cloud provisioning: Service discovery and load-balancing. Cloud computing: Principles, systems and applications, 195-217.

[17] Chang, H., Mariani, L., & Pezzè, M. (2008, September). Self-healing strategies for component integration faults. In 2008, 23rd IEEE/ACM International Conference on Automated Software Engineering-Workshops (pp. 25-32). IEEE.

[18] The Rise of Edge-Native Applications, vantiq, online. https://vantiq.com/blog/the-rise-of-edge-native-applications/

[19] Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A survey on observability of distributed edge & container-based microservices. IEEE Access, 10, 86904-86919.

[20] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[21] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[22] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[23] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[24] Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109

[25] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[26] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[27] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[28] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[29] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

[30] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109

[31] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[32] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[33] Karri, N. (2022). Predictive Maintenance for Database Systems. International Journal of Emerging Research in Engineering and Technology, 3(1), 105-115. https://doi.org/10.63282/3050-922X.IJERET-V3I1P111

[34] Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation and Predictive Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research in Engineering and Technology, 3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

[35] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

[36] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

[37] Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110

[38] Pedda Muntala, P. S. R. (2023). AI-Powered Chatbots and Digital Assistants in Oracle Fusion Applications. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 101-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P111

[39] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[40] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[41] Tekale, K. M. (2023). Cyber Insurance Evolution: Addressing Ransomware and Supply Chain Risks. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 124-133. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P113

[42] Karri, N., & Jangam, S. K. (2023). Role of AI in Database Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 89-97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P110

[43] Enjam, G. R., & Tekale, K. M. (2024). Self-Healing Microservices for Insurance Platforms: A Fault-Tolerant Architecture Using AWS and PostgreSQL. International Journal of AI, BigData, Computational and Management Studies, 5(1), 127-136. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P113

[44] Kiran Kumar Pappula, "Transformer-Based Classification of Financial Documents in Hybrid Workflows" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 48-61, 2024.

[45] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[46] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation. International Journal of AI, BigData, Computational and Management Studies, 5(2), 102-116. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111

[47] Jangam, S. K., & Karri, N. (2024). Hyper Automation, a Combination of AI, ML, and Robotic Process Automation (RPA), to Achieve End-to-End Automation in Enterprise Workflows. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 92-103. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P109

[48] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. International Journal of AI, BigData, Computational and Management Studies, 5(1), 102-113. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111

[49] Karri, N. (2024). Real-Time Performance Monitoring with AI. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 102-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111

[50] Tekale, K. M. (2024). AI Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative AI, Bias Detection, and Explainability in Insurance Decisioning. International Journal of AI, BigData, Computational and Management Studies, 5(1), 159-166. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116

[51] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[52] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[53] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[54] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[55] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[56] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[57] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[58] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

[59] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[60] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[61] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.IJERET-V3I1P110

[62] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110

[63] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[64] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[65] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur. International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.IJERET-V3I2P111

[66] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[67] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[68] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[69] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109

[70] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[71] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[72] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[73] Tekale , K. M. (2023). AI-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[74] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

[75] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[76] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[77] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[78] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111

[79] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

[80] Anasuri, S., & Rusum, G. P. (2024). Software Supply Chain Security: Policy, Tooling, and Real-World Incidents. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 79-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P108

[81] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

[82] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113

Downloads

Published

2025-05-08

Issue

Section

Articles

How to Cite

[1]
G. P. Rusum, “Edge-Native Software: Designing Resilient Apps for Low-Latency, Distributed Environments”, AIJCST, vol. 7, no. 3, pp. 29–45, May 2025, doi: 10.63282/3117-5481/AIJCST-V7I3P103.

Most read articles by the same author(s)

Similar Articles

1-10 of 100

You may also start an advanced similarity search for this article.