Agentic AI: Building Self-Directed Software Agents with Multimodal Reasoning

Authors

  • Guru Pramod Rusum Independent Researcher, USA. Author
  • Sunil Anasuri Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I1P101

Keywords:

Agentic Ai, Multimodal Reasoning, Autonomy, Reinforcement Learning, Symbolic Ai, Artificial Intelligence

Abstract

Artificial Intelligence (AI) has come in with highly intelligent systems that continuously do ever more complex tasks. The proposed research relates to one of the newer paradigms in AI research, Agentic AI, which can be understood as autonomous, self-directed software agents that can execute goal-driven behavior via multimodal reasoning. This paper explores the design, construction, and deployment of Agentic Artificial Intelligence systems capable of synthesizing information across different modalities, including text, images, audio, and environment monitoring sensors, so as to generate intelligent autonomous choices. The main deliverable of the research is the development of a framework, which combines multimodal mechanisms of reasoning with agent-based architectures, and allows adaptive and context-sensitive behavior. To address this problem, we postulate a modular architecture that integrates the ability to learn fast and enough through reinforcement learning and profound associations throughout symbolic reasoning in this paper to effectuate decision-making in a real-time scenario and learning in a challenging arena. Our literature review is extensive and follows the development of autonomy in AI systems, the purpose of multimodal reasoning and issues in integration. The approach we use presents a layered model, which consists of perception, cognition, and action modules that accomplish specific tasks and communicate with each other using a common knowledge base. Our prototype system has been tested on various benchmarking scenarios, including navigation, task planning, and multi-agent coordination. Experience indicates a significant increase in task completion rate, awareness of context, and learning efficiency compared to unimodal and static AI agents. The paper concludes with a discussion of the ethical implications, limitations, and future trends of developing generalizable, safe, and socially agreeable autonomous agents. The study aims to develop agents that not only act intelligently but also learn and respond to new circumstances in intelligent ways

References

[1] Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45.

[2] Winograd, T. (1972). Understanding natural language. Cognitive psychology, 3(1), 1-191.

[3] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[4] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International Conference on machine learning (pp. 8748-8763). PmLR.

[5] Alayrac, J. B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., ... & Simonyan, K. (2022). Flamingo: a visual language model for few-shot learning. Advances in neural information processing systems, 35, 23716-23736.

[6] Marcus, G. (2020). The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177.

[7] Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier.

[8] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1, pp. 9-11). Cambridge: MIT press.

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

[10] Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2018). Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6077-6086).

[11] Tan, H., & Bansal, M. (2019). LXMERT: Learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490.

[12] Bisk, Y., Holtzman, A., Thomason, J., Andreas, J., Bengio, Y., Chai, J., ... & Turian, J. (2020). Experience grounds language. arXiv preprint arXiv:2004.10151.

[13] Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., & Parikh, D. (2017). Making the 'v' in VQA matter: Elevating the role of image understanding in visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6904-6913).

[14] Franklin, S. (1997). Autonomous agents as embodied AI. Cybernetics & Systems, 28(6), 499-520.

[15] Wadekar, S. N., Chaurasia, A., Chadha, A., & Culurciello, E. (2024). The evolution of multimodal model architectures. arXiv preprint arXiv:2405.17927.

[16] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yogamani, S., & Pérez, P. (2021). Deep reinforcement learning for autonomous driving: A survey. IEEE transactions on intelligent transportation systems, 23(6), 4909-4926.

[17] Giannakos, M. N., Sharma, K., Pappas, I. O., Kostakos, V., & Velloso, E. (2019). Multimodal data as a means to understand the learning experience. International Journal of Information Management, 48, 108-119.

[18] Wang, Y., & Ruhe, G. (2007). The cognitive process of decision making. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 1(2), 73-85.

[19] Funge, J., Tu, X., & Terzopoulos, D. (1999, July). Cognitive modelling: Knowledge, reasoning and planning for intelligent characters. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 29-38).

[20] Ding, N., He, Q., Wu, C., & Fetzer, J. (2015). Modelling traffic control agency decision behavior for multimodal manual signal control under event occurrences. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2467-2478.

[21] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[22] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[23] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[24] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[25] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[26] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[27] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[28] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[29] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[30] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[34] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[35] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[36] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[37] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[38] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[39] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

[40] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[41] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[42] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

[43] Tekale, K. M., Enjam, G. R., & Rahul, N. (2023). AI Risk Coverage: Designing New Products to Cover Liability from AI Model Failures or Biased Algorithmic Decisions. International Journal of AI, BigData, Computational and Management Studies, 4(1), 137-146. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I1P114

[44] Karri, N., Jangam, S. K., & Pedda Muntala, P. S. R. (2023). AI-Driven Indexing Strategies. International Journal of AI, BigData, Computational and Management Studies, 4(2), 111-119. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112

[45] Gowtham Reddy Enjam, Sandeep Channapura Chandragowda, "Decentralized Insured Identity Verification in Cloud Platform using Blockchain-Backed Digital IDs and Biometric Fusion" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 75-86, 2024

[46] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[47] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[48] Reddy Pedda Muntala , P. S. (2024). The Future of Self-Healing ERP Systems: AI-Driven Root Cause Analysis and Remediation. International Journal of AI, BigData, Computational and Management Studies, 5(2), 102-116. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P111

[49] Jangam, S. K., & Karri, N. (2024). Hyper Automation, a Combination of AI, ML, and Robotic Process Automation (RPA), to Achieve End-to-End Automation in Enterprise Workflows. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 92-103. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P109

[50] Anasuri, S., & Pappula, K. K. (2024). Human-AI Co-Creation Systems in Design and Art. International Journal of AI, BigData, Computational and Management Studies, 5(1), 102-113. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P111

[51] Karri, N. (2024). Real-Time Performance Monitoring with AI. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 102-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P111

[52] Tekale, K. M. (2024). AI Governance in Underwriting and Claims: Responding to 2024 Regulations on Generative AI, Bias Detection, and Explainability in Insurance Decisioning. International Journal of AI, BigData, Computational and Management Studies, 5(1), 159-166. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P116

[53] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[54] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[55] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[56] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[57] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[58] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[59] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[60] Karri, N., & Jangam, S. K. (2021). Security and Compliance Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 73-82. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P109

[61] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[62] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

[63] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110

[64] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[65] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[66] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[67] Karri, N. (2022). Leveraging Machine Learning to Predict Future Storage and Compute Needs Based on Usage Trends. International Journal of AI, BigData, Computational and Management Studies, 3(2), 89-98. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P109

[68] Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation and Predictive Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research in Engineering and Technology, 3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

[69] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

[70] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[71] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111

[72] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[73] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[74] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[75] Tekale, K. M., & Enjam, G. reddy. (2023). Advanced Telematics & Connected-Car Data. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 124-132. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114

[76] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115

[77] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2024). Chatbot & Voice Bot Integration with Guidewire Digital Portals. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 82-93. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P109

[78] Kiran Kumar Pappula, "Transformer-Based Classification of Financial Documents in Hybrid Workflows" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 48-61, 2024.

[79] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[80] Pedda Muntala, P. S. R., & Karri, N. (2024). Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. International Journal of AI, BigData, Computational and Management Studies, 5(1), 114-126. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112

[81] Sandeep Kumar Jangam, Partha Sarathi Reddy Pedda Muntala, "Comprehensive Defense-in-Depth Strategy for Enterprise Application Security" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[82] Anasuri, S. (2024). Prompt Engineering Best Practices for Code Generation Tools. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 69-81. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P108

[83] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2024). Adaptive Tuning and Load Balancing Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 5(1), 101-110. https://doi.org/10.63282/3050-922X.IJERET-V5I1P112

[84] Tekale, K. M., Rahul, N., & Enjam, G. reddy. (2024). EV Battery Liability & Product Recall Coverage: Insurance Solutions for the Rapidly Expanding Electric Vehicle Market. International Journal of AI, BigData, Computational and Management Studies, 5(2), 151-160. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115

Downloads

Published

2025-01-02

Issue

Section

Articles

How to Cite

[1]
G. P. Rusum and S. Anasuri, “Agentic AI: Building Self-Directed Software Agents with Multimodal Reasoning”, AIJCST, vol. 7, no. 1, pp. 1–14, Jan. 2025, doi: 10.63282/3117-5481/AIJCST-V7I1P101.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 92

You may also start an advanced similarity search for this article.