Automated Returns Management and Reverse Logistics in SAP

Authors

  • Sunil Anasuri Independent Researcher, USA. Author
  • kiran Kumar Pappula Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3117-5481/AIJCST-V7I5P106

Keywords:

SAP, Returns Management, Reverse Logistics, Automation, S/4HANA, EWM, CRM, RMA, Supply Chain, ERP, Inventory Management, Customer Satisfaction

Abstract

Modern supply chains are significantly influenced by reverse logistics and returns management. The snowball effect that has resulted from the proliferation of online purchasing and the ease with which customers can request returns has compelled businesses and their customers to ensure that they have well-organized and automated return systems. This article is about returns management and reverse logistics with computers in a SAP environment--the subject however is restricted to these three SAP functionalities: SAP S/4HANA EWM and CRM toolsetne Mechanism for Returns: Using such SAP technologies (not yet fully automated) as processing credit memos or changing inventory, managing reverse logistics and permission Continuing Return Material Authorizations (RMA)--this report on how electronic technology has introduced new concepts into returns management looks at past difficulties and changing technologies in the future.It describes some of the benefits of automation in SAP, and how happy customers will purchase more products from you while also reducing your staff's workload. These benefits include improved operational efficiency--no longer having to return items cross country-andespecially lower costs The action returns automation policies was brought to the institutions which pioneered it together leverage points

References

[1] Stock, J. R., & Mulki, J. P. (2009). Product returns processing: an examination of practices of manufacturers, wholesalers/distributors, and retailers. Journal of Business Logistics, 30(1), 33-62.

[2] Rogers, D. S., & Tibben‐Lembke, R. (2001). An examination of reverse logistics practices. Journal of Business Logistics, 22(2), 129-148.

[3] Mollenkopf, D., Stolze, H., Tate, W. L., & Ueltschy, M. (2010). Green, lean, and global supply chains. International journal of physical distribution & logistics management, 40(1/2), 14-41.

[4] Blackburn, J. D., Guide Jr, V. D. R., Souza, G. C., & Van Wassenhove, L. N. (2004). Reverse supply chains for commercial returns. California management review, 46(2), 6-22.

[5] Guide Jr, V. D. R., & Van Wassenhove, L. N. (2009). OR FORUM—The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18.

[6] Ravi, V., & Shankar, R. (2005). Analysis of interactions among the barriers of reverse logistics. Technological Forecasting and Social Change, 72(8), 1011-1029.

[7] Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36(4), 535-548.

[8] Genchev, S. E., Glenn Richey, R., & Gabler, C. B. (2011). Evaluating reverse logistics programs: a suggested process formalization. The International Journal of Logistics Management, 22(2), 242-263.

[9] Turrisi, M., Bruccoleri, M., & Cannella, S. (2013). Impact of reverse logistics on supply chain performance. International Journal of Physical Distribution & Logistics Management, 43(7), 564-585.

[10] Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterization of logistics networks for product recovery. Omega, 28(6), 653-666.

[11] Returns Management vs. Reverse Logistics: Understanding the Difference, Reverselogix, online. https://www.reverselogix.com/industry-updates/returns-management-vs-reverse-logistics-understanding-the-difference/

[12] Jayaraman, V., Patterson, R. A., & Rolland, E. (2003). The design of reverse distribution networks: Models and solution procedures. European Journal of Operational Research, 150(1), 128-149.

[13] Brolin, S., & Lundgren, I. (2024). Return handling practices and strategies: Towards sustainable e-commerce in the fashion and electronics industries.

[14] Ravi, V. (2014). Reverse logistics operations in the automobile industry: a case study using SAP-LAP approach. Global Journal of Flexible Systems Management, 15(4), 295-303.

[15] Wijewickrama, M. K. C. S., Chileshe, N., Rameezdeen, R., & Ochoa, J. J. (2021). Information Sharing in Reverse Logistics Supply Chains of Demolition Waste: A Systematic Literature Review. Journal of Cleaner Production, 280, 124359.

[16] Narayanan, S. (2010). Optimizing reverse logistics with SAP ERP. Bonn, Germany: Galileo Press.

[17] Mollenkopf, D., Russo, I., & Frankel, R. (2007). The Returns Management Process in Supply Chain Strategy. International Journal of Physical Distribution & Logistics Management, 37(7), 568-592.

[18] Advanced Return Management Integration with SAP S/4 HANA Embedded EWM 2020, 2021. online. https://community.sap.com/t5/supply-chain-management-blog-posts-by-members/advanced-return-management-integration-with-sap-s-4-hana-embedded-ewm-2020/ba-p/13494619

[19] Sarferaz, S. (2022). Compendium on enterprise resource planning: Market, functional and conceptual view based on SAP S/4HANA. Springer Nature.

[20] Kole, A. (2016, October). A review and study on advanced control and automation functions and future control for a modern combined cycle power plant. In the 2016 International Conference on Intelligent Control, Power and Instrumentation (ICICPI) (pp. 215-220). IEEE.

[21] Stock, J., Speh, T., & Shear, H. (2006). Managing product returns for competitive advantage. MIT Sloan Management Review.

[22] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[23] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[24] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[25] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[26] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[27] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[28] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[29] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[30] Karri, N. (2021). Self-Driving Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 2(1), 74-83. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10

[31] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[32] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[33] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[34] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[35] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[36] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[37] Karri, N., & Pedda Muntala, P. S. R. (2022). AI in Capacity Planning. International Journal of AI, BigData, Computational and Management Studies, 3(1), 99-108. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P111

[38] Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

[39] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[40] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

[41] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

[42] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[43] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[44] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[45] Tekale, K. M., & Enjam, G. reddy. (2023). Advanced Telematics & Connected-Car Data. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 124-132. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P114

[46] Karri, N. (2023). ML Models That Learn Query Patterns and Suggest Execution Plans. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 133-141. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P115

[47] Guru Pramod Rusum, "Green ML: Designing Energy-Efficient Machine Learning Pipelines at Scale" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 49-61, 2024.

[48] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2024). Chatbot & Voice Bot Integration with Guidewire Digital Portals. International Journal of Emerging Trends in Computer Science and Information Technology, 5(1), 82-93. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I1P109

[49] Pappula, K. K., & Anasuri, S. (2024). Deep Learning for Industrial Barcode Recognition at High Throughput. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 79-91. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P108

[50] Rahul, N. (2024). Improving Policy Integrity with AI: Detecting Fraud in Policy Issuance and Claims. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(1), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I1P111

[51] Pedda Muntala, P. S. R., & Karri, N. (2024). Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. International Journal of AI, BigData, Computational and Management Studies, 5(1), 114-126. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112

[52] Sandeep Kumar Jangam, Partha Sarathi Reddy Pedda Muntala, "Comprehensive Defense-in-Depth Strategy for Enterprise Application Security" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 3, pp. 62-75, 2024.

[53] Karri, N. (2024). ML Algorithms that Dynamically Allocate CPU, Memory, and I/O Resources. International Journal of AI, BigData, Computational and Management Studies, 5(1), 145-158. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P115

[54] Tekale, K. M., Rahul, N., & Enjam, G. reddy. (2024). EV Battery Liability & Product Recall Coverage: Insurance Solutions for the Rapidly Expanding Electric Vehicle Market. International Journal of AI, BigData, Computational and Management Studies, 5(2), 151-160. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P115

[55] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[56] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[57] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[58] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[59] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[60] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[61] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[62] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108

[63] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[64] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[65] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[66] Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Predictive Analytics in Oracle Fusion Cloud ERP: Leveraging Historical Data for Business Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 86-95. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P110

[67] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[68] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[69] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2022). Forecasting Hardware Failures or Resource Bottlenecks Before They Occur. International Journal of Emerging Research in Engineering and Technology, 3(2), 99-109. https://doi.org/10.63282/3050-922X.IJERET-V3I2P111

[70] Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

[71] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111

[72] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[73] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[74] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[75] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[76] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[77] Tekale , K. M. (2023). AI-Powered Claims Processing: Reducing Cycle Times and Improving Accuracy. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 113-123. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P113

[78] Karri, N., & Pedda Muntala, P. S. R. (2023). Query Optimization Using Machine Learning. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 109-117. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P112

[79] Rusum, G. P., & Anasuri, S. (2024). Vector Databases in Modern Applications: Real-Time Search, Recommendations, and Retrieval-Augmented Generation (RAG). International Journal of AI, BigData, Computational and Management Studies, 5(4), 124-136. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I4P113

[80] Enjam, G. R. (2024). AI-Powered API Gateways for Adaptive Rate Limiting and Threat Detection. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 117-129. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P112

[81] Pappula, K. K., & Rusum, G. P. (2024). AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 91-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

[82] Rahul, N. (2024). Revolutionizing Medical Bill Reviews with AI: Enhancing Claims Processing Accuracy and Efficiency. International Journal of AI, BigData, Computational and Management Studies, 5(2), 128-140. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I2P113

[83] Reddy Pedda Muntala, P. S., & Jangam, S. K. (2024). Automated Risk Scoring in Oracle Fusion ERP Using Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 5(4), 105-116. https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P111

[84] Jangam, S. K. (2024). Scalability and Performance Limitations of Low-Code and No-Code Platforms for Large-Scale Enterprise Applications and Solutions. International Journal of Emerging Trends in Computer Science and Information Technology, 5(3), 68-78. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I3P107

[85] Karri, N., & Pedda Muntala, P. S. R. (2024). Using Oracle’s AI Vector Search to Enable Concept-Based Querying across Structured and Unstructured Data. International Journal of AI, BigData, Computational and Management Studies, 5(3), 145-154. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I3P115

[86] Tekale, K. M. (2024). Generative AI in P&C: Transforming Claims and Customer Service. International Journal of Emerging Trends in Computer Science and Information Technology, 5(2), 122-131. https://doi.org/10.63282/3050-9246.IJETCSIT-V5I2P113

Downloads

Published

2025-09-15

Issue

Section

Articles

How to Cite

[1]
S. Anasuri and kiran K. Pappula, “Automated Returns Management and Reverse Logistics in SAP”, AIJCST, vol. 7, no. 5, pp. 69–81, Sep. 2025, doi: 10.63282/3117-5481/AIJCST-V7I5P106.

Most read articles by the same author(s)

Similar Articles

1-10 of 67

You may also start an advanced similarity search for this article.